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Abstract—Multi-scale feedback systems, where information
cycles through micro- and macro-scales leading to adaptation,
are ubiquitous across domains, from animal societies and human
organisations to electric grids and neural networks. Studies on the
effects of timing on system properties are often domain specific.
The Multi-Scale Abstraction Feedbacks (MSAF) design pattern
aims to generalise the modelling of multi-scale systems where
feedback occurs across scales. We expand on MSAF to include
timing concerns and illustrate their effects via two models: a
hierarchical oscillator (HO) and a hierarchical cellular automata
(HCA). Results show how (i) different timing configurations sig-
nificantly affect system macro-properties and (ii) different regions
of time configurations can lead to the same macro-properties.
These results contribute to theory, while also providing useful
insights for designing and controlling such systems.

Index Terms—Multi-scale feedback systems, time scales, os-
cillator, hierarchical cellular automata, micro-macro behaviour

I. INTRODUCTION

Multi-scale systems are those systems where different scales
of time, space, or information granularity interrelate via infor-
mation flows. If information cycles through the system leading
to the adaptation of system entities, they become multi-scale
feedback systems [39]. E.g., workers in an organisation send
information about their state to their managers, who send back
commands leading to changes in their behaviours. Similarly,
foraging ants lay pheromones, forming a trail that affects
their behaviour. In autonomic systems, managed resources are
monitored and commands are issued for self-adaptation [28].
In these examples, information from the micro-scale (workers,
ants, resources) is abstracted onto a macro-scale, and some
adaptation at the micro-scale occurs based on information
flowing back down. Such feedback cycles can be repeated
at recursively higher scales, with increasing abstraction tied
to ever larger system parts, e.g., multi-level management
organisations, ecosystems or autonomic systems [32], [42]. We
use level and scale to refer to the granularity of observation
of space, time, or information within a system [12].

While multi-scale feedback systems can be found across
all domains, their generic properties remain under-explored.
In previous work, we introduced the Multi-Scale Abstraction
Feedbacks (MSAF) design pattern, as a means to generalise
feedback cycles of information flows operating at multiple ab-
straction levels in various systems [11], [10]. MSAF identifies

scales in relation to information abstraction – irrespective of
how this is implemented and deployed. A macro-property at
a higher scale can be tied to an exogenous macro-entity (e.g.,
an organisation’s manager, different from the workers) but can
also be micro-distributed among micro-entities at a lower scale
(e.g., knowledge of power relations distributed across members
of an animal society [21]), or composed of micro-entities
(e.g., forest patch shapes affecting tree growth). Such multi-
scale design allows coordinating increasingly larger systems,
via a divide-and-conquer approach. Each scale may process
similar amounts of information by making a different trade-
off between information accuracy and control scope.

Another important trade-off is between a system’s reaction
time and the control scope considered, at different scales.
Such timing aspects depend on inherent communication and
processing delays, process execution frequencies, and adapta-
tion lags (i.e., how long before adaptation takes effect). The
question of how such timing aspects affect the behaviour of
multi-scale systems has been approached primarily in domain-
specific ways. General insights that would facilitate cross-
domain transfer remain vague and untested. E.g., it is often
said that higher levels must operate at a slower rate than lower
ones, to ensure system stability [43], [32], [42]. Yet, excessive
communication delays between macro- and micro-scales can
cause dysfunction depending on system goals [20]. This paper
aims to distill common timing concerns from domain-specific
timing considerations across multi-scale systems, and to illus-
trate the effects of these time concerns via two examples.

Sec. III expands the MSAF pattern with common timing
aspects. Sec. IV and V illustrate the effects of these aspects
on system macro-properties, via two case studies of multi-
scale oscillator models: a hierarchical oscillator (HO) [29] and
a hierarchical cellular automata (HCA) [13], respectively. We
focus on these as many real-world systems feature oscillating
patterns, from collective behaviour in animal groups [17] and
circadian cycles in the brain [27] to opinion dynamics in social
networks [36], clock synchronisation in distributed computing
systems, and the coupled motion of pendulum clocks [15].

Results highlight two key timing impacts. First, they show
that different timing configurations can significantly affect
system macro-properties. This allows using time delays as con-
figuration parameters for changing system behaviours. Second,
they show that different regions of time configurations lead to



the same macro-property. This can help system robustness to
time variations. We do not aim to claim these findings as new
contributions to multi-scale oscillators. Rather, we propose
them as generic time-related principles in multi-scale feedback
systems, based on analysed literature and case studies.

II. BACKGROUND & RELATED WORK

A. Timing in Multi-Scale Systems

The role of timing in multi-scale systems has been explored
mostly in either domain-specific ways (e.g., hierarchical smart
grids [40], houses [4] and vehicles [2]) or in generic terms
(e.g., multi-level design patterns in self-adaptive systems [42],
autonomic systems [32], organic computing (OC) [38], self-
aware systems [14], and multi-agent systems [33]). In both
cases, results are difficult to reuse and transfer across domains.
It is generally considered that lower levels should execute
faster than higher ones. While this applies to most systems,
the underlying constraints and variants are rarely discussed.
Exceptions may also exist depending on desired behaviour
(e.g., stock markets may not aim to reach a steady state).

Similar examples can be found in natural system studies. In
the field of ecology, multi-scale systems are usually nested. As
macro-properties arise from compositions of micro-entities, it
is often taken for granted that higher levels operate at a slower
rate than lower ones, and that this is necessary for system
stability [3]. Similarly, research in biology and paleontology
that has focused on nested hierarchies assumes that different
timescales are inherent to such systems [41]. Institutional and
policy studies, on the other hand, tend to focus on multi-
scale systems with exogenous macro-entities (e.g., higher-level
bureaucracies send commands to lower ones). Here, delays are
often described as dysfunctional, as they can lead to policy
ineffectiveness (as upper levels send out-dated commands to
controlled resources) [7]. Building on the examples of coral
reef formation and power dynamics in Macaque societies,
[20] argues that slow-changing variables (at the macro-scale)
reduce the amount of environmental uncertainty for micro-
entities, but that if these variables are too slow, they cannot
be detected by micro-entities. The fact that slow-changing
macro-variables can be perceived as constant by micro-entities
is also noted by [18], within adaptive neural code, showing
how in the flies’ vision system adaptation occurs at different
timescales, with longer ones providing a separate information
transmission channel. Ref. [6] links organism motor functions
to primitive language, indicating that macro-properties (or
‘symbols’) allow to delay immediate reactions to external
changes, so as to take into account previous experiences and
generate more complex behaviours.

The control systems community has studied timing in multi-
scale systems using different terminology, e.g., hierarchical,
singularly perturbed, multiloop, nested, and cascade control
systems. Hierarchical control systems are addressed in [19],
where hierarchies are defined by functions or time horizons
of the multilayer configuration. The highest layer necessarily
has the longest time horizon to achieve optimal control for the
system. Applications of singular perturbation theory to control

systems were reviewed in [31], where systems are decomposed
into parts with fast and slow dynamics. Multiloop [9], nested
[5], and cascade [22] systems generally refer to systems in
which multiple feedback loops control variables of importance
at different scales. E.g., in aerospace applications different
loops address (from micro- to macro-scale): attitude, attitude
rate, and guidance. It is generally assumed that higher levels
(i.e., the outer loops in the nested system) operate at a slower
rate, or that optimal relative rates for stability and performance
can be shown in specific situations.

B. Coupled Oscillators

Our two case studies build on existing models of coupled
oscillators. Kim et al. [29] explores the synchronisation of
coupled biochemical oscillations in cellular systems. Syn-
chronisation is affected by the coupling strength and com-
munication delay, with the parameter space showing three
distinct behaviours: oscillation without synchronisation, oscil-
lation with synchronisation, and no oscillation. This model was
chosen because of the explicit inclusion of time delay between
oscillators as a parameter and we expand it by connecting os-
cillators in multi-scale configurations, and adding micro-macro
communication delays that affect synchronisation (sec. IV).

For the HCA case, we expand on the model in [13], where
Cellular Automata (CAs) were organised in a multi-scale con-
figuration, generating macro-structures from uniform micro-
scale conditions. Here, we analyse how different combinations
of execution frequencies at various scales affect micro and
macro oscillating behaviours (sec. V).

As highlighted in [34], natural oscillatory processes tend
to follow a multi-scale organisation, with macro-scale fre-
quencies affecting micro-scale behaviour. In most oscillators,
communication and adaptation are not instantaneous [37]. E.g.,
biological systems require a minimum interval to transmit
information [8]. The same applies to most artificial systems.
Hence, time-related questions are relevant both in the context
of oscillator behaviour, within a wide range of applications,
and for multi-scale feedback systems, more generally. Several
studies discussed the impact of time delays on the behaviour
of coupled oscillators (e.g., [26], [30]). These studies suggest
that time delays can significantly affect system dynamics [16].

III. MSAF DESIGN PATTERN & TIME EXTENSIONS

A. Overview of the MSAF Design Pattern

The MSAF design pattern in [11], [10] models feedback
loops in multi-scale systems in terms of information flows
that merge, split, and cycle through different abstraction levels
(Fig. 1). Information flows are streams of changes (attached
to a material substrate) which can be observed, interpreted,
and used for adaptation in line with semantic definitions of
information [25]. Such information flows merge and aggregate
information at increasingly higher abstraction levels (bottom-
up), then split and reify information again at more detailed
levels (top-down), forming multi-scale feedback cycles.

A single feedback loop consists of the following steps (blue
in Fig. 1): 1) acquisition and abstraction of state information;
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Fig. 1: MSAF Feedback Loops: All arrows are information
flows. Each level Lk is a macro level relative to the one below
Lk−1 (except for bottom level, L0) and a micro level for the
one above Lk+1 (except for top level, LM−1).

2) information processing (e.g., decision); 3) information
reification (control command); and 4) adaptation. These steps
match existing feedback designs in autonomic (MAPE-K) [28]
and organic computing [38], or feedback control systems [23].

Extending this design to multiple scales implies adding
further feedback loops on top of each other. This involves two
extra steps for connecting feedback loops between levels (in
green): a) sending state abstraction of Lk to upper level Lk+1;
and b) receiving control information from Lk+1, to be used
as control input, or goal, in Lk’s processing step (2). From
Lk’s perspective, all upper-level feedbacks can be modelled
as a single one (dotted green arrow), at Lk+1; and all lower
levels as one adaptation process (dotted blue arrow), at Lk−1.

Hence, a managed resource (at L0) receives feedback con-
trols that merge information from several scales, covering
increasingly larger system scopes. Such multi-scale feedback
design helps to control large systems by limiting the amount
of processed information at each level and by mixing quick
local reactions with slower coordinated responses.

B. Time Considerations in Multi-Scale Feedback Loops

Generalising from feedback systems [23] and control theory
[35], we distill several key timing considerations impacting
system behaviour: communication delay; processing time;
adaptation lag; sample time (for digital systems). To simplify,
we merge these into two main timing aspects, applicable to
all MSAF steps: i) execution delay (τ ), the step execution
duration (including communication and processing); and ii)
execution interval (∆t), how often the step executes. We group
MSAF steps (1-3) (abstraction, processing, and control) into
a single ‘management flow’ (including inter-level abstraction
(a) and control (b) for higher levels), featuring an execution
delay τmng and interval ∆tmng . The adaptation step (4) also
features an execution delay τadpt and interval ∆tadpt.

All timing considerations from ‘classic’ feedback control
systems apply here. We highlight some of these below without
aiming for a comprehensive review. Delay in the management
flow τmng implies the risk of providing a control command
(output) based on an outdated monitored state (input). It may
lead to oscillations, longer settling times, or instability [23];

and decrease reactivity to state disturbances. Yet, if τmng <<
τadpt there is a risk of overreaction from the management
flow, i.e., repeating or exacerbating a control command as
it fails to perceive the effects of a previous command. This
risk is removed when controls are not ‘cumulative’ (e.g., goal-
oriented commands can be repeated with the same effect).

With respect to execution intervals, the smaller the ∆tmng

(i.e., the management flow executes more often), the more
reactive it can be to state changes, while again, risking to
overreact if it executes before previous controls take effect.
Overreaction is avoided if ∆adpt < ∆mng (also considering
delays); or when controls are repeated (without increased
amplitudes) and the adaptation flow only executes the last
one (if ∆adpt > ∆mng). Ideally, the management flow would
execute rapidly (τmng → 0), but only at intervals large enough
for the effects of its commands to take effect in the adaptation
flow (∆mng ∼ τadpt). Other combinations of execution delays
and intervals are also viable. The above considerations become
more complex when feedback cycles extend across multiple
scales. When management flows at different scales execute in
parallel, each flow at Lk gets abstract state information from
Lk−1 and control information from Lk+1, to issue commands
back to Lk−1. For Lk, information from Lk−1 is more recent
than from Lk+1, as the latter would have crossed at least an
extra scale. Yet, information from Lk+1 includes abstractions
about broader system scopes (under control levels from Lk+1

to LM−1). This allows Lk entities to coordinate their local
actions based on wider system views. Control information for
L0 entities merges information flows from all system scales,
with lower-scales information being narrower but more recent
(or accurate) and higher-scales information being broader but
more outdated. Hence, higher-level management flows would
have larger delays than lower ones, as it takes more time
for their input and output flows to travel to and from L0.
This situation is due to system implementation constraints
(i.e., inherent communication and processing delays at each
level), rather than being a desirable system design property.
Still, in case of rapid management relative to adaptation delay
(τmng<<τadpt) it makes sense to execute higher managers
less often than lower ones (∆mng,k>∆mng,k−1), to avoid
overreactions or instability. However, increasing ∆mng,k may
decrease the system’s coordinated responses. Typical solutions
combine fast, accurate, localised reactions from lower-scales,
for avoiding disaster (e.g., reflexes in organisms, obstacle
avoidance in autonomous cars) with slower, more context-
aware responses, for coordinated behaviour (e.g., strategic
planing in organisms, rerouting autonomous cars). Various
combinations of cross-level execution delays and intervals lead
to different system behaviours (macro-properties). We focus on
examples illustrated via our two applications (HO and HCA).

IV. BIOCHEMICAL OSCILLATOR MODEL

A. HO Overview

We use the coupled biochemical oscillator model from [29]
which is extended to: a) a flat network of more than two
coupled oscillators and b) a hierarchy of oscillators. Coupled



Fig. 2: Coupled oscillators with PP coupling (a) and NN
coupling (b).

biochemical oscillators are observed throughout many systems
in nature [29] (e.g., cellular processes involving circadian
rhythms). A single oscillator consists of two interacting com-
ponents X and Y (e.g., mRNA and protein) in which X
inhibits its own synthesis while promoting that of Y and Y
inhibits its own and X’s synthesis, resulting in a feedback rela-
tionship that induces oscillation in the concentrations of both.
In coupled biochemical oscillators, each oscillator consists of
two interacting components X and Y , with coupling between
the X components as shown in Fig. 2. There are two types of
coupling: double-positive (PP) in which each X promotes the
synthesis of the other, or double-negative (NN) in which each
X inhibits the synthesis of the other. Further, the interactions
have two parameters: coupling strength F between the two
X’s and communication time delay τ associated with their
interaction. With respect to oscillation period, in [29] it was
shown that PP coupling performed better with low τ , while
NN was more robust with large τ . In this section, we extend
the model to multiple oscillators in multiple configurations to
determine if similar results are obtained.

To accommodate multiple oscillators, we generalise this
model to include more oscillators arranged in a ‘flat’ config-
uration (i.e., no hierarchy). Fig. 3(a) shows this system with
four oscillators, which can have either P or N type coupling.
Each Xi promotes or inhibits Xi+1 depending respectively on
P or N type coupling. The HO design includes oscillators at
different levels. Here, oscillators differ from their stand-alone
forms by taking into account (detailed) state information from
the lower levels and (abstract) control information from the
upper levels. The macro-entities are oscillators whose models
are modified from [29]. Fig. 3(b) shows the HO structure for
three levels with two children per oscillator. The coupling
occurs between the X components of the oscillators between
levels. There is no direct communication between oscillators
at a given level.

B. Flat and HO Models

The flat network of oscillators is modeled by the following
differential equations; for i = 1..N , where N is the number
of oscillators and i− 1 is within the range 1..N (so if i = 1,
then i− 1 = N ). It is assumed that all oscillators are coupled
with the same strength F , type P or N, and time delay τ .

dXi

dt
=

1 + PP (FXi−1(t− τ))
3

1 + (FXi−1(t− τ))
3

+
(

Yi(t−2)
0.5

)3 . . .
. . .− 0.5Xi(t) + 0.1

(1)

Fig. 3: (a) A flat network with N = 4 oscillators and (b)
a hierarchy of oscillators with M = 3 levels and C = 2
children per oscillator. Each oscillator consists of X and Y
components. The small circles indicate either P or N type
coupling between the X components of each oscillator.

dYi
dt

=

(
Xi(t−2)

0.5

)3
1 +

(
Xi(t−2)

0.5

)3 − 0.5Yi(t) + 0.1 (2)

For the HO, the differential equations for X depend on their
level. At the highest level, oscillators only act as aggregators
of information from the lower level. At the lowest level, they
only receive feedback from their corresponding macro-entity.
Oscillators at middle levels receive information from above
and below. While the equation modelling the Y component of
all oscillators is analogous to (2), the model for X is:

dXm,i

dt
=

1 + PP (FmΓm,i(t− τm))
3

1 + (FmΓm,i(t− τm))
3

+
(

Ym,i(t−2)
0.5

)3 . . .
. . .− 0.5Xm,i(t) + 0.1 (3)

where

Γm,i(·) =WXm+1,pm,i
(·) + (1−W )X̄m,i(·) (4)

and X̄m,i(·) denotes the mean X concentration taken over the
children of Xm,i; m = 0..M − 1, where M is the number of
levels; i = 0..Nm− 1, where Nm is the number of oscillators
in level m; pm,i is the position of the parent of Xm,i; K =
M −1; Fm is the coupling strength; τm is the time delay; and
W ∈ [0, 1]. Parameters Fm and τm are constant across a level
and W is constant across the system.

In the HO model, the abstracted information is the average
concentration of a substance X in micro-entities given by
X̄m,i(·). The feedback information that is sent down from
macro to micro is the concentration of X in the macro-
oscillator, which impacts the concentration of X in the micro-
oscillators through (3). Function Γm,i(t − τm) in (4) com-
municates both the abstracted information from the lower
level and feedback information from the higher level, with
W controlling the relative importance of the feedback signal.
For the top and bottom levels, Γ is modified to eliminate the
first and second terms respectively due lack of feedback from
above and lack of aggregated information from below.

C. Simulation Time and Sequence

The oscillators are continuous time systems described by
differential equations, digitized using a numerical solver. Each



differential equation was solved simultaneously for specified
interval of time [0, Tend], resulting in a discrete time series of
X and Y concentration values.

With respect to timing aspects described in Section III-B,
there is a micro-to-macro abstraction delay and macro-to-
micro feedback delay, both characterised by τm, which reflects
the time it takes for the concentration of X to be transmitted
(i.e., transmission delay, in literature). This means that the
abstracted state and feedback is based on old micro-state
information. These semantics simulate communication delays
τmng for abstracted states, with negligible adaptation delay
(τadpt = 0) and continuously executing feedback cycles
(∆mng and ∆adpt). Delays at higher levels are always higher
than at lower levels due to delay accumulation.

D. Experimental Settings
A number of system configurations were simulated. Flat

networks had from 4 to 11 oscillators. HOs had 64 bottom-
level oscillators arranged in two ways: M = 2 levels, C = 64
children; and M = 4 levels, C = 4 children. For each
configuration a range of parameter values was used: coupling
strength F = 0..8, time delay τ = 1..15, and coupling (PP,
NN). Each configuration was simulated for 10 runs, with
the initial X values of an oscillator randomly chosen from
the interval (0,1) and the initial Y values set to 1. Values
of oscillation frequency, amplitude, and synchronisation time
were averaged over the 10 runs. Since in all cases, only small
variations in these values were measured and overall system
behavior was consistent, 10 runs was deemed sufficient to
investigate the macro-properties.

E. Overall Behaviour
The coupled oscillator systems exhibit three basic types of

emergent behaviour: unsynchronised oscillation, no oscilla-
tion, and synchronised oscillation with all levels in phase. In
the case of the HO, there is an additional type: synchronised
oscillation with levels out of phase. These behaviours are
shown in Fig. 4 (for M = 3 levels and C = 2 children).
The three stacked time series plots show the oscillator X
concentrations at each level plotted together, with the top level
having one oscillator, the middle level having two oscillators,
and the bottom level having four oscillators.

F. Experimental Results
In flat networks, it was found that synchronisation occurred

consistently in PP coupled systems having no more than 5
oscillators and for NN coupled systems having no more than
10 oscillators in the network. Furthermore, the region of the
parameter space that achieved synchronisation was a relatively
small subset. To achieve consistent synchronisation in systems
with more than 10 oscillators and for a larger range of F and
τ values, it is necessary to have a hierarchical structure.

For HO systems, we present two kinds of results relevant to
our contribution (with analogs in the HCA model): the effect
of system parameters on a) generated macro patterns and b)
oscillation periods. Other results on oscillation amplitudes and
synchronisation settling time are also briefly discussed.

Fig. 4: Different types of emergent behaviour for an HO
with M = 3 levels and C = 2 children. Upper left:
unsynchronised oscillation. Upper right: no oscillation. Lower
left: synchronised oscillation with adjacent levels out of phase.
Lower right: synchronised oscillation with all levels in phase.

1) Impact of time on generated macro patterns: In HO
systems, Fig. 5 shows the emergent behaviour of the system for
all configurations tested. In all cases, the bottom level synchro-
nised for the middle range values of F (yellow region). For low
F values, there was oscillation, but no synchronisation (light
blue region). For high F values, there were no oscillations
(dark blue region). The smaller hierarchy (M = 2) achieved
synchronisation in a larger part of the parameter space. There
are two distinct transition regions: from unsynchronised to
synchronised oscillations and from synchronised oscillations
to no oscillations. The transition from synchronised to no
oscillations was deterministic. For both PP systems, oscilla-
tions only occurred for 0 ≤ F ≤ 3.5. This transition was
unaffected by time delay. In contrast, for both NN systems,
the transition from oscillations to no oscillations occurred for
F between 3 and 6, depending on the value of time delay. The
transition from unsynchronised to synchronised oscillations
was stochastic, as indicated by the color transition from light
blue to yellow: yellow, synchronisation happened in each run;
light blue, it did not happen in any run; in-between colors,
synchronisation occurred only in some runs, according to the
color scale to the right of the plot.

2) Impact of time on oscillation periods: Fig. 6 shows how
the period of oscillation varies with the coupling strength and
time delay. Time delay has a larger impact on the period for PP
coupled systems while the effect is negligible for NN coupled
systems. The number of levels had no effect on the period.

Oscillation amplitude varies with time delay within the
synchronised region, with a larger impact occurring in NN
systems (in contrast to the effect on period). The number
of levels (M = 2 and M = 4) had a negligible impact
on amplitude; but fewer levels lead to faster synchronisation,
for both PP and NN coupling. The effect of time delay on



Fig. 5: Each plot shows the emergent behaviour for F = 0..8
and τ = 1..15. Colors indicate regions in the parameter space
where different behaviours occur: Dark blue, no oscillations;
yellow, synchronised oscillations (with levels in or out of
phase); light blue, unsynchronised oscillation; color gradients
from yellow to light blue, synchronisation only in some runs.

Fig. 6: Each plot shows the oscillation period for F = 0..8
and τ = 1..15. Upper left: M = 2 levels, C = 64 children,
PP coupling. Upper right: M = 4 levels, C = 4 children, PP
coupling. Lower left: M = 2 levels, C = 64 children, NN
coupling. Lower right: M = 4 levels, C = 4 children, NN
coupling. Zero values mean there is no oscillation.

synchronisation time is more pronounced for NN coupling.
Full results can be found at [1].

G. Discussion

These results show the effect of time delay on the system’s
macro patterns and their properties. For NN coupling τ affects
the type of synchronisation, but not the amplitude. Conversely
for PP coupling, τ affects the oscillation period, but not the
synchronisation type. For both types, the number of levels
M affects unsynchronised to synchronised transition, due to
the increased time delay caused by larger M . Further, these
results indicate that HO systems are advantageous compared
to flat networks: a) HO systems are able to synchronise more

oscillators: 64 oscillators for HO, compared to a maximum of
5 and 10 for flat networks (with PP and NN, respectively).
b) The desired synchronisation behaviour occurs in a larger
region of the parameter space as noted by the large yellow
regions in Fig. 4. In contrast, at their maximum size, flat
networks achieved synchronisation for a single combination
of coupling strength and time delay. c) Due to their large
synchronised region, HO systems are more robust to parameter
variations. For NN, a change in one parameter (time delay)
can also be compensated by changing another parameter
(coupling strength) to reach synchronisation without affecting
the amplitude.

V. HIERARCHICAL CELLULAR AUTOMATA CASE STUDY

A. HCA Overview

Cellular Automata (CA) are discrete models where the state
of each entity (cell) at t depends on the cell’s previous state
and on its neighbours’ states, at t-1. Cells are usually arranged
in a grid and their inter-dependency modelled via a rule set.
CA, including coupled CA, have been employed to model a
wide range of complex systems, including multi-scales [24].
To analyse timing effects on such multi-scale systems, we
reuse the Hierarchical Cellular Automata (HCA) simulator
in [13]. It organises multiple CA into several levels. Cross-
level CA interactions follow the MSAF pattern: a) abstract
state information (bottom-up) and b) control commands or
goals (top-down). Each CA (except the top) has two rule
sets: Expansive rules (RE) increase the CA’s number of live
cells; Regressive rules (RR) decrease them. The control goal
from above dictates the CA’s active rules (to execute). CAs at
different levels have different RE-RR rule-pairs.

Each CA at a lower level Lk is mapped bidirectionally to a
single cell of a CA at a higher level Lk+1. In the bottom-up
mapping, the entire state of a lower CA is abstracted (based
on the percentage of its live cells relative to a threshold Thk)
and sets the binary state of its mapped cell in a higher CA. In
the top-down mapping, the state of each cell in a higher CA
controls the rule activation of its mapped lower CA (i.e., sets
RE or RR). These bidirectional interactions form inter-level
feedbacks, replicated at successive levels, up to the top (which
only executes static rules). Simulations are deterministic.

B. HCA Notation & Inter-level Mapping

Table I summarises the main HCA concepts and notations
(details in [13]). HCA consists of several levels (Lk), each
with one or several CA (CAk,i) (Fig. 7). Each CAk,i at a
micro-level is mapped bidirectionally to one cell Ck+1,j,s of
a CAk+1,j at the macro-level: a) the state abstraction (ASk,i)
of CAk,i (micro) is set as the state (CSk+1,j,s) of its mapped
cell Ck+1,j,s (macro) via (5) and (6) and b) the control goal
(Gk,i) from the cell state CSk+1,j,s (macro) sets the active
rule of its mapped CAk,i (micro) via (7) and (8).

CSk+1,i ← ASk,i , i = 1..Nk , map(Ck+1,i;CAk,i) (5)

ASk,i =

{
1, if

∑Sk,i

s=1 CSk,i,s >= Thk

0, otherwise
(6)



TABLE I: Main HCA Concepts and Notations

Notation Description
Lk Level k, with k = 0..M -1, M the N◦ of HCA levels
CAk,i Cellular Automata i at level Lk ,

i = 0..Nk-1, Nk the N◦ of CA at Lk
CAk,i ⇒
< state >

CAk,i converges to steady state < state >: either OP

(oscillate with period P ) or SX (stuck with X live cells)
CSk,i,s State of Cell Ck,i,s of CAk,i (Sk,i cells), s=1..Sk,i

CSk,i,s ∈ {0, 1}, 0 ≡ false/dead, 1 ≡ true/live
ASk,i Abstract State of CAk,i, ASk,i ∈ {0, 1}
Thk Threshold for calculating Abstract States of CAk,i at Lk

Gk,i Goal of CAk,i; Gk,i ∈ {0, 1}
Rk,i Active Rules (executing) of automaton CAk,i

map(Ck,i,s;
CAk−1,j)

Mapping between cell Ck,i,s and automaton CAk−1,j ;
implies transfer of abstract state (up) & cntrl. goal (down)

Fqk Activation frequency of level Lk– the number of activa-
tions of Lk after which CAk,i actually execute Rk,i.

Fq = ... Activation frequency pattern across HCA levels;
E.g., Fq= 1-2-3 means that Fq0=1, Fq1=2, Fq2=3

Gk,i ← CSk+1,i, map(Ck+1,i;CAk,i) (7)

Rk,i =

{
Rk,E (Expansive rules), if Gk,i == 1

Rk,R (Regressive rules), if Gk,i == 0
(8)

C. Simulation Time & Sequence

A HCA simulation proceeds in discrete cycles, each one
executing all levels successively, from bottom L0 to top LM−1.
A cycle consists of M discrete steps tk (k=0..M-1), each one
executing all CAs at a corresponding level Lk.

Each CAk,i in an active level Lk: i) exchanges information
with its macro-CA (sends ASk,i, (6); gets a control goal
Gk,i, (7)); ii) sets its active rules (Rk,i) depending on its
goal (Gk,i, (8)); and iii) steps (executes its active rules). As
exceptions, CA0,i (bottom) do not get abstracted states from
below, using their previous state instead; and CAM−1 (top)
do not get goals from above, using a static rule. During a step
tk, all CAs at Lk execute in parallel; the step ends when all
CAk,i have finished executing.

With respect to timing aspects in subsec. III-B, HCA
considers state abstraction delays as negligible and control
communication delays of one cycle between each two levels
(i.e., τmng,k=1 cycle). Hence, abstract state is always up to
date (i.e., travels across all levels in one cycle) yet controls take
M steps to arrive from top to bottom. Adaptation delay is also
negligible (τadpt=0). Each level has an activation frequency
Fqk (i.e., execution interval ∆mng,k): Fqk=d means that Lk

only activates at every d cycles. Finally, control commands Gk

are cumulative (repeating them exacerbates the effect), yet do
not increase their values if inactive micro-CAs ignore them.

D. Experimental Settings

We set-up a three-level HCA: L0 (bottom), L1 (middle) and
L2 (top), Fig. 7. L0 has 32 CAs (4x8 matrix), of 441 (21x21)
cells each. This maps to a 32 (4x8) cell CA at L1 which maps
to a one-cell CA at L2. To simplify HCA behaviour, we only
experiment here with inversible rule-pairs (e.g., from any CA
state, executing RE and RR leads to the same state).

Fig. 7: 3-level HCA, with 3 differentiated states at L0: 4x
Corners CACr (purple), 16x Borders CABo (green), 12x Core
CACo (cyan).

Fig. 8: Diamond Rules: a) RE for L0 &L1; b) RR for L0; c)
RR for L1.

All experiments start with CAk,0 in the same initial state,
executing R0,E ; and CA1 and CA2 in dead state (sending G=1
control goals until first changing to live states). Experiments
vary in configurations for the two thresholds (Th0 and Th1)
for calculating abstract states for L1 and L2 via (6) and the
three activation frequencies (Fq0, Fq1 and Fq2), setting the
delay between subsequent level activations (for L0, L1 & L2).

To show the rule-independence of our results, we tested two
inversible rule-pairs at L0: 1) Diamond (Fig. 8: (a) RE & (b)
RR; non-toroidal), with CA0,i initialised with one central live
cell, generating an expanding and regressing diamond shape
(Fig. 9-top); and 2) Line (RE : cell ‘dead’ → ‘live’ if at least
one live neighbour, and RR: cell ‘live’ → ‘dead’ when less
than 4 live neighbours; toroidal), with CA0,i initialised with
a central horizontal line of live cells, generating a vertically
expanding and retracting rectangle (Fig. 9-bottom).

For CA1 we always use a non-inversible rule-pair (Fig.
8: (a) RE & (c) RR), which generates four possible states
(Fig. 10): Null (0 live cells), Core (12 live cells), Cross (28
live cells), and Full (32 live cells). L2 has a single rule-set,
inverting the current state (i.e., live → dead; dead → live).

We define three experimental sets, with Th0=0.1 (i.e., 10%
live cells) and Th1 ∈ {0.3, 0.7, 0.9}. These three values fall
in between the four CA1 states; all other values are redundant.

Fig. 9: 21x21 CA0 States: expand left-to-right, RE ; regress
right-to-left, RR Diamond (top): generates 20 states, with N◦

of live cells: 1, 5, 13, 25, 41, 61, 85, 113, 145, 181, 221, 261,
297, 329, 357, 381, 401, 417, 429, 437, 441; Line (bottom):
11 states: 21, 63, 105, 147, 189, 231, 273, 315, 357, 399, 441.



Fig. 10: CA1 States: expand left-to-right (RE): Null → Core
→ Cross → Full; regress right-to-left (RR): Null ← Core ←
Full (skip Cross, non-inversible).

Within each set, we run tests with varying activation frequen-
cies: Fq0=1..2, Fq1=1..5, Fq2=1..5. A test with Fq=1-3-5
means that Fq0=1, Fq1=3, Fq3=5. This leads to about 300
tests (2 rules x 3 Th1 values x 50 Fq values).

E. Overall Behaviour

A finite CA can only converge (⇒) to three behaviours: i)
dead (S0), all cells set to 0; ii) live-stuck (SX ), blocked in a
state with X live cells (set to 1); iii) oscillating (OP ), cycling
through a set of states, with the state sequence repeating every
P steps. At L0, a CA0,i’s behaviour depends on the goal
pattern received from L1 (i.e., 1 & 0 sequence activating RE &
RR). If a goal pattern has more 0s than 1s, activating RR more
than RE , then CA0,i⇒S0. If RE activates more than RR, then
CA0,i⇒S441. For ‘balanced’ RE &RR patterns, CA0,i⇒OP .

Superposing goal patterns from CA1’s four states differen-
tiates CA0,i into a maximum of three groups (Fig. 7): 1) Core
CA0,Co, the 12 CA0,i at the core of L0’s 4x8 matrix; mapped
to the 12 live cells in CA1’s Core state; 2) Corner CA0−Cr,
the 4 CA0,i at the corners of L0’s matrix; mapped to the 4
dead cells in CA1’s Border state; and 3) Border CA0−Bo, 16
remaining CA0,i on the borders of L0’s matrix (no corners).

In brief, CA0,i have an expanding or regressing tendency
(i.e., growing or shrinking N◦ of live cells) depending on the
active rule set, RE or RR, respectively. When crossing Th0,
this tendency is propagated (and accentuated) upwards through
CA1. When crossing Th1, it reaches CA2, which inverses it.
The inverse tendency is propagated downwards, back to CA0,i,
which crosses Th0 the other way. The propagation process
is repeated upwards with the opposite tendency, then inverted
again at CA2. This creates an expansion-regression oscillation
across levels. Because CA1 executes its own rule-pair CA0,i

differentiate, following different behaviours and converging to
different states (e.g., 3 CA0,i states in Fig. 7).

F. Experimental Results

We present two kinds of results, relevant to our contribution.
Firstly, we show how different activation frequencies constrain
the possible oscillation periods P that may occur at HCA lev-
els. We also note that many frequency combinations generate
the same oscillation period P (macro-property), though not
necessarily through the same state set. Secondly, we show how
different activation frequencies lead to different macro-patterns
amongst CA0,i, i.e., whether CA0,Co, CA0,Bo, CA0,Cr con-
verge to OP , S0 or SX . Full results can be found at [1].

1) Impact of time on oscillation periods: Table II sum-
marises results for Diamond rules, with Th0 = 0.1, Th1 =
0.7, Fq0 = 1, and Fq1 & Fq2 varying between 1 and 5. At

TABLE II: Oscillations for Diamond rules: Th0=0.1, Th1=0.7,
Fq0=1, Fq1&Fq2=1..5

L0, some CA0,i oscillate and some end in a static state. To
simplify, we only show here the OP value for the CA0,i that
do oscillate and discuss differentiated macro-patterns in the
next subsection. Equivalent results were obtained for Fq0 = 2.

Results show clear correlations between activation frequen-
cies (Fq pattern) and ensuing OP values. We generalise these
for P0 and P1 via (9) based on empirical analysis (P2 features
an equivalent formula, replacing Fq1 with Fq2 in (9)).

In brief, we note that for Fq=1-1-1 we get O2 at all levels.
This is due to L2’s state-inversion rule and the inter-level delay
τmng of 1 cycle, which changes active rules (between PE &
PR) at each cycle, going back-and-forth between two states
and producing O2, the double of the rule-changing frequency.
When one of the level frequencies doubles, the rule-changing
frequency also doubles, and P doubles this value. E.g., for
Fq ∈ {1-1-2,1-2-1,1-2-2} we get O4 at all levels. We observe
equivalent results in all cases marked in green in Table II,
where P is the double of the maximum frequency of all levels.
When frequencies at L1 and L2 differ (red in Table II), the
level with the highest frequency still features P that doubles
that frequency; while in the level with lower frequency P is a
multiple of the lowest common multiplier (LCM) of all level
frequencies. This makes sense as that is the only cycle where
all levels execute. L0 always follows the same OP as L1.

P0 = P1 =

{
a ∗ Fq1, if Fq1 > Fq2

b ∗ LCM(Fq0, F q1, F q2), if Fq1 < Fq2

a, b ∈ N>0 \ {1}
(9)

Similar results were obtained when increasing Th1 to 0.9.
The main difference was that for Fq=1-3-4, we obtained
O12 at all levels; rather than O24-O24-O8 as when Th1=0.7.
Results for Th1=0.3 were also similar, the only difference
occurring for Fq ∈ {1-4-5, 1-2-3}, where the HCA ⇒ S0.
Using Line rules produced equivalent Ok,P types when testing
the same configuration ranges. A difference here is that the
toroidal configuration means that a CA0,i that grows (RE) to
all live cells can no longer regress (RR), hence staying in S441

(e.g.,for Fq0=1, Fq1=5, Fq2=1..5 & any thresholds).
2) Impact of time on generated macro patterns: At L0,

macro-patterns occur as different behaviours in the three CA0,i



TABLE III: Macro-patterns for Diamond (left) & Line (right)

groups: CA0,Cr (corners), CA0,Bo (borders), and CA0,Co

(core). Different Fq patterns generate different macro-patterns.
E.g., Table III shows macro-patterns for the Diamond and Line
rules for all frequency patterns with at least one Fqk = 3.

G. Discussion

Results show how timing adjustments (e.g., activation fre-
quencies) can be used to control macro-behaviours (e.g.,
oscillation periods P ). Notably, Pk only depends on cross-
level frequency patterns (9), while the rule-pairs and threshold
configurations only impact the state set that such oscillations
cycle through and the macro-pattern. Furthermore, a wide
range of frequency combinations lead to similar oscillation
behaviour, e.g., all combinations with a maximum frequency
of 2 lead to O4 forms and so on, all the way to maximum of
Fq=5 leading to O10 (and multiples, e.g., O20, O30). These are
key properties for controlling oscillations, while being robust
to disturbances (e.g., in thresholds or frequencies).

Results also show how varying frequencies that lead to
the same oscillation periods at L0 (as above) may do so
via different macro-pattern formations (i.e., different CA0,i

states). Hence, activation frequencies become configuration
parameters for shifting overall system behaviour (i.e., macro-
pattern productions). As above, different frequency configura-
tions can lead to the same macro-pattern, which can enhance
robustness.

VI. GENERAL DISCUSSION

The above examples brought to the fore two significant as-
pects about how timing may impact system macro-behaviours:
i) different combinations of execution delays and frequencies
impact resulting macro-properties (all other parameters being
the same) – hence timing properties represent system config-
urations in their own right, to be studied or designed as such;
and ii) multiple timing configurations may result in the same
macro-property, which may help enhance system robustness
against time-related variations. These results are in line with
existing insights across specific fields, including control theory.
Here, we provided a common framework to test and discuss
such insights in a more generic manner, allowing to formalise
them more rigorously and to compare them across fields. The
two case studies thus illustrated how generic timing concepts
distilled from the vast domain-specific literature could play
out in similar ways across various application domains.

TABLE IV: Comparison of HO and HCA case studies

HO HCA
info abstraction

(bottom-up) averaging (of X conc.) binary threshold-crossing
(number of live cells)

control commands
(top-down)

macro state (average X
conc.)

macro state
(rule-activating goal)

macro-properties
analysed

oscillator synchronisation
type and period

oscillation period and
macro-pattern

simulation time continuous discrete cycles

inter-level delays abstraction & control
delays (transmit X conc.)

control delay (transmit
goal)

execution
frequencies NA configurable at each

level

configuration
parameters

multi-scale structure,
abstraction delays,
coupling strength

rule-pairs, initial states,
abstraction thresholds,
execution frequencies

While still theoretical, the two examples illustrated different
instances of multi-scale oscillation systems, with many po-
tential applications. They differ in their functions, multi-scale
design choices, and analysed variations (see Table IV), but
despite these differences, the examples featured highly similar
generic results with respect to the timing impacts on macro-
properties.

VII. CONCLUSIONS

This paper identified common timing-related concerns from
domain-specific literature (i.e., execution delays and frequen-
cies) and illustrated their impact on system macro-properties
via two concrete examples: hierarchical biochemical oscilla-
tors (HO) and cellular automata (HCA). We selected these case
studies as both generic and applicable to various domains.
Experimental results from both examples show how timing
confers a configuration parameter just as powerful as any other
variable. I.e., changing execution delays or intervals, in various
cross-scale combinations, generates different outcomes, e.g.,
synchronisation types and oscillation periods in HO; macro-
patterns and oscillation periods in HCA. Also, several time
configuration regions produce equivalent macro-behaviours,
possibly improving system robustness to time disturbances.
This contribution sets a basis for developing a comprehensive
theory of timing in multi-scale feedback systems, helping
practitioners to transfer and apply key insights across domains.
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