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Abstract—Explainable AI (XAI) has become a major topic
in Artificial Intelligence since the mid 2010s. While smart home
explainability promises to improve user experience and trust, it is
mostly left outside the scope of current AI research. We identify
three main challenges that may cause this delay. First, smart
device heterogeneity hinders the development of a system-wide
vocabulary and communication medium required for end-to-
end explanation. Second, smart homes undergo runtime changes
– e.g. dynamic component additions, deletions and updates
– that require corresponding explanatory updates. Third, the
explanation context may undergo runtime changes, where word
meanings may vary with the end-user and the passing seasons.
To tackle these challenges, we propose a generic, modular
XAI architecture featuring: i) Local Explanatory Components
(LECs) that provide resource-specific explanatory expertise and
support runtime extensions; ii) mapping capabilities that allow
LECs to translate resource-specific monitoring variables into
resource-independent abstractions – predicates and events – which
can then be used for generic inter-LEC communication; iii)
a generic central component, called Spotlight, that coordinates
LECs to generate system-wide explanations. We validate our
proposal via a cyber-physical prototype of self-explainable smart
home, implemented via a physical home maquette equipped
with GrovePi sensors. We show how our prototype can handle
several realistic scenarios highlighting the main issues identified
above. This provides an initial stepping-stone towards a fully self-
explanatory smart home solution. The genericity of our proposal
opens the way for transferring it to similar application domains.

Index Terms—Smart Home, Autonomic System, Explainable
AI

I. INTRODUCTION

In 2016, DARPA identified Explainable Artificial Intelli-
gence (XAI) as an upcoming challenge for AI systems [1].
This call for projects is the consequence of several chal-
lenges identified within the AI community. First, the opacity
of black box models and their predominance in recent AI
techniques raise concerns, especially for critical applications
(e.g., autonomous vehicles, medical diagnostics). Second, as
most AI techniques rely on Big Data, several concerns have
been raised regarding personal data usage. In this respect,
authorities enforced regulations, such as the European General
Data Protection Regulation (GDPR), which require companies
to justify their use of personal data. Going further, the GDPR
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evokes a “right to explanation” for any AI system’s end
users [2].

Despite this recent interest, many end applications are
unable to provide explanations to users. For instance, consider
a room equipped with smart devices [3], such as a temperature-
controlling thermostat. In case the temperature crosses the
expected range, the user may ask the system to explain this
situation. To the best of our knowledge, no solution exists
to propose this kind of service. Most consumer devices, such
as Google Home or Amazon’s Alexa, will treat such specific
request as any other generic question (i.e. that can be answered
based on common knowledge from the Internet). Even though
this approach may generate satisfactory answers, it provides
no guarantee of pertinence, as its explanation is not generated
based on an understanding of the specific problem. In addition,
relying on distant knowledge makes the system dependent
to network connection and may raise concerns regarding
reasoning opacity and data usage.

This lack of appropriate solutions is brought to the fore
in the context of smart homes, or more generally of Cyber-
Physical Systems (CPS) – e.g. smart buildings and power
grids. The high specificity, dynamism and context sensitivity
of such CPS render generic solutions based on similar cases
inappropriate. We identify the following key characteristics of
smart homes (and CPS) that XAI solutions should address:

a) Resource heterogeneity: : smart homes consist of a
collection of smart devices that collectively achieve high-level
goals, such as comfort, power consumption or security [4], [5].
Each device can present its own interface: think, for instance,
of how a window controller and an electric appliance differ. An
explanatory system compliant with smart homes must handle
this heterogeneity, while most of current XAI research focuses
on monolithic, uniform systems. In addition, as devices may
be provided by different manufacturers, internal knowledge
may not be available for house-wide applications, as certain
critical variables may be kept private.

b) Runtime adaptation: : most smart home solutions
feature modular, flexible architectures, allowing for “plug-and-
play” capabilities and runtime adaptation to context and goal
changes [6]. While these properties contribute to maintain-
ability and performance, they may also introduce surprising
or unexpected behaviors that require explanations for users.
For instance, if a system self-adapts its behavior following the



addition of a new device, the house occupant may inquire the
reason for the perceived change. However, the impact of these
properties in XAI are, to the best of our knowledge, out of
the scope of current XAI research.

c) Context-dependence: : rather than based on a fixed
ontology, words employed in natural language may change
their meaning to users depending on the context in which they
are used – e.g. the definition of the concept of “cold” differs
depending on the user, the time of the year or the country. This
introduces new difficulties when explaining situations within
smart homes, as such vocabulary variations must be handled
and integrated within the system’s explanatory reasoning.

Based on these challenges, we identify several architectural
principles that we believe self-explaining smart home systems
should follow. Inter-device communication is mandatory for
generating system-wide explanations, which must integrate
specific knowledge from several system components. This
communication must be agnostic to devices types (Cf. chal-
lenge 1. above), hence necessitating generic, standard commu-
nications. To be able to handle runtime changes and adaptation
(Cf. challenge 2), the explanatory system’s architecture must
be modular: local explanatory components (LECs) must con-
tain the specific knowledge needed to explain the behavior
of dynamic system components; these LECs can be added,
removed and managed at runtime so as to follow correspond-
ing adaptations in the underlying system components to be
explained. To consider context as part of the explanatory
reasoning (Cf. challenge 3), the system must be able to self-
observe and re-evaluate its assumptions – e.g., the meaning of
words to users, such as the temperature range corresponding
to the word “cold”; or, the accuracy of its temperature sensors
in time. It can then propose as explanations the differences
between previous and updated assumptions.

In this paper, we propose a self-explanatory system that
satisfies the above criteria – i.e., implementing a generic
and modular architecture, and taking context into account
(Figure 1). We consider that a smart home contains various
kinds of Observable Components, either Managed Resources
or Autonomic Managers (AM), according to the generic archi-
tecture of Autonomic Computing systems [6]. Each component
is observable via a resource-specific interface, which allows to
plug-in a corresponding Local Explainable Component (LEC)
that analyzes, reasons about and explains this component.
LECs then translate their resource-specific observations into
higher-level Boolean propositions using a set of generic pred-
icates and recorded events. This enables standard inter-LEC
communication, using the high-level Boolean propositions.
A central component, the Spotlight, coordinates the LECs
to generate system-wide explanatory reasoning, following a
process introduced in a previous work [7]: Decentralized
Conflict-Abduction-Simulation (D-CAS).

The rest of this paper is organized as follows. In Section II,
we review existing works on autonomic systems and AI
explainability to better understand the problem of generating
explanations for smart homes. We detail the proposed architec-
ture and its features in Section III. We present the implementa-
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Fig. 1: Architectural overview of the proposed Explanatory
System. Smart devices (yellow) and Autonomic Managers
(AM, green) are observed by a layer of Local Explainable
Components (LECs, pink) via resource-specific monitoring
interfaces (red). The LECs then present generic interfaces to
a central “Spotlight” coordinator.

tion of a proof-of-concept demonstrator that mimics a realistic
setup on embedded devices in Section IV. In Section V, we
draw conclusions based on the first results and propose future
research axes towards explainable autonomic systems.

II. BACKGROUND AND RELATED WORKS

Autonomic Computing (AC) systems maintain their oper-
ations while requiring minimal user intervention when dy-
namic changes occur [6], [8]. Namely, AC systems can self-
monitor, self-diagnose and self-modify in response to changes
in their execution environment, internal resources or targeted
objectives. This self-adaptive behavior can be implemented
in various manners depending on the system requirements
and constraints. We focus here on AC systems that feature
modular, decentralised architectures, as needed to self-adapt
to structural changes in the managed system [?](e.g., dynamic
addition or removal of managed resources). This mostly suits
the targeted application domain of Cyber-Physical Systems
(CPS), e.g. smart homes in particular.

Smart homes are defined as collections of various connected
devices and controllers that interact with the shared physical
environment of an individual house to achieve different high-
level goals such as comfort, security and power efficiency [4].
In many aspects, smart homes are examples of the Autonomic
Computing paradigm, as their goal is to automatize mundane
house management and minimize user intervention.

In recent years, XAI has put the focus on “opening the
black box” of opaque AI models. Notably, methods such as
LIME [9] or SHAP [10] propose to explain the output of clas-
sifiers in terms of feature relevance: they identify which feature
of the input data points was the most discriminating in the
classification result. For instance, they may determine that a
person’s age was a bank algorithm’s prime decision factor in a



loan demand rebuttal. A variety of approaches and techniques
exist to handle various AI models and applications [11].

However, we argue that existing XAI methods are not
satisfactory regarding the challenges presented in Section I.
First, as previously evoked, most XAI techniques aim to
explain a single monolithic opaque AI model, while smart
homes are built as collections of numerous heterogeneous
devices. Second, as some criticism highlights, most XAI
methods are not targeting end-users. Rather, they focus on
synthetic benchmarks which do not reflect user needs [12].
For instance, the output of visualization-based methods, such
as GradCam [13] or LIME [9], can be useful for an AI expert,
but are far from the intuitive notion of explanation that would
satisfy non-expert users.

To the best of our knowledge, no XAI solution focuses
on generating explanations for AC systems at runtime, while
addressing all highlighted challenges. E.g., in [14], the MAB-
Ex (Monitor - Analyze - Build - Explain) framework proposes
to tweak the popular MAPE (Monitor - Analyze - Plan -
Execute) computing scheme [6] into an explanatory system.
Instead of planning system adaptations, the Build process
updates a causal system model that can then be used to produce
user-specific explanations (via the Explain process). While
pertinent, the proposal is rather preliminary and offers few
reusable artifacts. Moreover, maintaining a centralized system
model may raise scalability and maintainability issues. In our
proposal, each LEC maintains a local model of the system
resource that it is supposed to explain; and the system-wide
model relevant to each explanation is generated at runtime
via the Spotlight’s coordination of relevant LECs. In previous
works, we have also studied the development of causality
models that could serve as a base for self-explanation [15].

III. PROPOSED GENERIC ARCHITECTURE

A. General principles and organization

The proposed architecture is depicted in Figure 2. We con-
sider that a smart home’s devices and autonomic managers (or
controllers) are observable (i.e. can be monitored via Specific
Interfaces); and we refer to them generically as Observable
Components (OCs). This assumption is hardly restrictive, as
component observation is a common feature of Autonomic
Systems [8] and smart devices [3].

Additionally, we assume that each OC-provider will of-
fer additional OC-specific modules (e.g. for abduction, in-
terpretation and simulation – Cf. Section III-E) that allow
reasoning about and explaining that particular OC. These
modules must implement standard interfaces to be integrated
into the explanatory system, as detailed below. This addresses
the heterogeneity issue, as each OC can come with its own
implementation of explanatory functions, appropriate for its
specific design and purpose. Each OC provides a standard
specification (Cf. Section III-E), indicating its specific modules
and its observable interfaces.

Local Explanatory Component (LECs) are generic compo-
nents that are created and customized at runtime based on OC
specifications. That is, when an OC is added into the system,

an associated Local Explanatory Component (LEC) is created
and customized based on the specifications exposed by the
OC. First, the LEC downloads and integrates the OC-specific
modules into its generic framework (i.e. plug-and-play). This
endows the LEC with inference knowledge (e.g. inference
rules, decision or machine learning techniques), allowing it to
determine the causes and consequences of its attached OC’s
state. Then, the LEC can interpret the data observed from its
attached OC so as to produce higher-level objects: events and
predicates.

To allow for inter-LEC reasoning and explanations, all
LECs expose the same Generic Interface and communicate
based on high-level representations of predicates and events.
A central component, the Spotlight, keeps an updated record
of LECs present in the system, integrating them via their
Generic Interfaces and coordinating them to generate system-
wide explanatory reasoning. The Spotlight itself is observable,
hence allowing a LEC to be associated to it and to enable self-
observation.

AM AM

Spotlight

User Inferface

LEC LEC LEC LEC LEC

LEC

Fig. 2: Local Explanatory Components (LECs) handle obser-
vations from associated Observable Components, via Specific
Interfaces (in red). All LECs expose to the Spotlight the same
standard Generic Interface

B. D-CAS overview: integrating LECs

In previous work, we proposed a generic process for gen-
erating explanatory reasoning, named Decentralized Conflict-
Abduction-Simulation (D-CAS) [7]. This method is imple-
mented within the Spotlight, allowing it to select relevant
LECs for each explanation, to query these LECs for partial
OC-specific explanations and to integrate these local explana-
tions into a coherent end-to-end explanation for the user.

More precisely, each explanation query is triggered by
a discrepancy between an observation and an expectation.
Formally, this is conveyed by a conflict (P,N) where P is a
Boolean proposition and N a number. P encodes the object of
the explanation, while N conveys the intensity of the request.
For instance, if the user inquires the reasons for a window
being open, his/her request is considered as the conflict



(open(window),−30). As the Spotlight has no knowledge of
the system’s state and logic, it forwards the request to the most
relevant LEC, asking it to further investigate the conflict. In
our example, the relevant LEC would be the one attached to
the window, so the Spotlight would send the request to it.

Depending on the query’s context and the LEC’s capabili-
ties, the LEC’s reply may be one of the following:

• ABDUCTION, (C,NC): a possible cause for the window
being open (determined via abduction). C is the propo-
sition defining the identified cause; NC its necessity.

• ACTION, (A,NA): an action that can revert the window
being open (determine via simulation). A is the proposi-
tion defining the identified action; NA its necessity.

• GIVE− UP: meaning that no other possibility was found,
or that the conflict cannot be confirmed.

In case the LEC’s response is based on abduction or action (i.e.
cause (C,NC) or action (A,NA)) the Spotlight considers this
response as a new conflict and repeats the process, as above,
by contacting the next relevant LEC that may handle it. This
recursive line-of-reasoning develops progressively, from one
LEC to the next, until a LEC returns a GIVE-UP response.
This may occur either because the LEC proposed an action
that was executed and resolved the conflict (hence the LEC
indicates that the conflict no longer exists); or, because the
questioned LEC has ran out of abduction and action options
to explore. The Spotlight interrupts the line of reasoning that
lead to the giving-up LEC and starts exploring an alternative
line-of-reasoning by re-questioning a previous LEC (which
may propose alternative causes or actions). Exploring such
alternative corresponds to branching a new line-of-reasoning
from one of the LECs interrogated before.

Hence, the overall explanation process that the Spotlight
coordinates produces a tree-like structure: starting from the
initial conflict that generated the query (root) and spawning
various lines-of-reasoning (branches) depending on the al-
ternative responses of interrogated LECs (e.g. Figs. 10 and
11). This explanatory tree provides the generic basis for
producing a final explanation to users – translating such formal
explanation into natural language is out of the paper’s scope.

In the rest of this section, we propose the architecture design
that enables D-CAS while presenting the desired properties of
knowledge locality and modularity.

C. Using Events and Predicates

Figure 3 depicts the internal LEC architecture. A Central
Unit interfaces the LEC with external components (i.e. handles
monitoring data from the associated OC; and D-CAS requests
from the Spotlight); and coordinates the execution of the other
LEC sub-components (i.e. Interpretation and Abduction Units;
Events and Predicates repositories).

The LEC uses its Interpretation Unit to analyse data ob-
served from its attached OC and then to translate this data
into Boolean propositions, which D-CAN uses. This analysis
is done in two steps. First, the Interpretation Unit records high-
level Event objects from the incoming data streams. Events are
static representations of noticeable trends or patterns in the
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Fig. 3: Internal architecture of Local Explanatory Component
(LEC). A LEC interprets data observed from its associated OC
and creates high-level events and predicates (purple arrows); it
also processes D-CAS requests from the Spotlight by perform-
ing abduction and simulation (not shown) (yellow arrows).

data. For instance, an event can correspond to a temperature
being higher than a given threshold, or a perceived movement
in the room. Formally, events are defined as triples (t, l,X):

e =


t ∈ N
l ∈ Lab

X ∈ Rdl

. (1)

Here, t is the timestamp of the event, l a label indicating its
nature, Lab is the set of possible labels and X is a vector of dl
characteristics. For instance, the system would consider a high
temperature as an event eh with the time of occurrence th, the
label lh = high temp, and characteristics Xh = {device :
thermo19,max temp : 27◦C, duration : 2930s}.

As events are of different natures, they do not share the
same characteristic dimensions – it is hence impossible to
compare them directly. To allow for inter-LEC communication,
we introduce predicates. Predicates are Boolean functions
over events that characterize them. Formally, a predicate p
is defined as:

p :

{
E × Nk 7→ Props× {0, 1}
(e, a1, . . . , ak) 7→ (prop, val)

, (2)

where k is the arity of the predicate p, i.e. the number
of additional arguments a1, . . . , ak used by the predicate.
The result of the predicate’s application on an event and
arguments is a Boolean proposition and its value. In our vision,
Boolean propositions are constructed as Strings. To illustrate
this, consider a predicate pin indicating whether an event
occurred in a given location. The arity of this predicate is
1, as it takes the desired location loc as an extra argument.
Given the previously considered high temperature event eh,
pin(eh, room1) will return the tuple (in(e, room1), true) if
the device thermo19, which reported eh, is in room1.

The Interpretation Unit identifies events and predicates from
OC observations and stores them in distinct memories. Here,
we operate the following distinction. On the one hand, events
correspond to structures identified in the data and to physical
measures that cannot be denied – hence, they are immutable
(i.e. they represent facts that once recorded can no longer
be altered). On the other hand, predicates correspond to the



LEC’s interpretation of recorded events – as such, they are
mutable (i.e. the predicate’s definition may change, as the
LEC’s and the user’s understanding may vary in time). For
instance, consider the predicate phot indicating whether a
recorded event corresponds to a hot feeling. Depending on
the context, this notion varies: 20◦C can be considered hot in
the winter and a normal temperature during summer. Hence,
the LEC’s Interpretation Unit can update predicate definitions
so as to adapt them to the current context.

Figure 4 models Predicates, Events and their relation via
a class diagram. A Predicate object contains: a signature
attribute defining the number and types of received arguments;
and two methods, evaluate and toProposition, that correspond
to the definition in Equation 2. Similarly, an event contains
three constant attributes, timestamp, label and characteristics,
corresponding to the event definition in Eq. 1.

Predicate
+ List<Class> signature

+ boolean evaluate(Event, List<Object>)
+ String toProposition(Event, List<Object>)

Event

- final boolean timestamp
- final Label label
- final Map<String, Object> characteristics

Interprets

Fig. 4: Class diagram of Predicates and Events. Note that
Event objects are immutable, with only final attributes.

D. LEC processing of a request query

During the explanation process described in subsection III-B
a LEC contributes to an explanation when requested by the
Spotlight to further investigate a query: (P,N), where P is a
Boolean proposition and N a number transcribing the intensity
of the request. In this subsection, we detail how the LEC
processes this request to generate one of the three possible
answers: ABDUCTION, ACTION or GIVE-UP (Cf. III-B).

Figure 5 depicts the LEC’s request-handing process as a
sequence diagram. The process is triggered when the LEC
receives a request from the Spotlight conveying the questioned
proposition and the associated necessity (P,N) (01). The LEC
then checks whether it can find a predicate p, arguments
a1, . . . , ak and an event e such that

p(e, a1, . . . , ak) = (P, true) . (3)

This corresponds to calls (02) and (03) in the sequence
diagram. In case this search is successful, the LEC’s Central
Unit transfers the request to the Simulation Unit (not depicted
in Figure 3 for clarity) and the Abduction Unit (08, 04). These
units will identify if, to the best of their knowledge, there exists
a causal hypothesis C that can provoke P or an action A that
could revert P , respectively (calls 05 to 07, and 09 to 11). For
each proposition, a necessity score is computed to account for
the estimated strength of the causal relation or mutability of the

Fig. 5: Sequence of a request processing by the LEC.

proposed action. These necessities are denoted NC and NA,
respectively. Both results are returned to the LEC’s Central
Unit, which compares both necessity scores and returns the
highest one to the Spotlight, with the corresponding flag. In
Figure 5, this corresponds to the result of the abduction unit
(12). In case both the Abduction and the Simulation Units fail
to find a solution, the LEC returns GIVE-UP instead.

In case the LEC fails to find a solution to Equation 3,
two options exist. If no predicate exists in memory that
corresponds to the requested proposition P , the LEC returns
a GIVE-UP response to the Spotlight to notify this mismatch
(15). Conversely, if a predicate p in the LEC’s memory
corresponds to the proposition P , but no recorded event can
be identified, the Central Unit notifies the Interpretation Unit
of the situation. Then, depending on the intensity |N | of the
request and of the beliefs of the Interpretation Unit, predicate



revision is possible (14): the Interpretation Unit may revise
the meaning of the predicate p so that a recorded event e
matches Equation 3 (14). For instance, if the LEC associated
to the temperature controller is requested to explain cold, but
finds no recorded event that matches its definition of cold, the
LEC may revise this definition so that some recent event can
be identified as cold. This mechanism takes advantage of the
mutability of predicates.

E. A modular architecture

As smart homes are highly heterogeneous and dynamic (Cf.
challenges 1 and 2 in sec. I), we aimed to provide a “plug-
and-play” feature that enables the runtime discovery and inte-
gration of new system components. While this feature already
exists for autonomic devices [6], [16], nothing comparable has
been designed for explanatory systems. In this subsection, we
detail the adaptation features enabled by our architecture.

As the system’s Observable Components change, the as-
sociated LECs must adapt their reasoning and explanation
capacities accordingly. Moreover, as new OCs are added to
the system dynamically, corresponding LECs must be added
to be able to reason about and explain them. We ensure this
flexibility by providing a modular LEC architecture 6. Namely,
the proposed LEC provides a generic framework, which is
specialized for understanding its attached OC by the addition
of dedicated modules. That is, the Abduction, Interpretation
and Simulation Units are composed of various modules that
can be added, removed or updated at runtime.

A local manager in the LEC’s Central Unit supervises
LEC modifications and records them as events, which can
then be characterized by predicates, to be integrated into
the explanatory reasoning as any other event. This manager
also maintains an up-to-date internal context that can be
used by some modules to integrate self-observation in the
explanatory reasoning. The internal manager also listens to
predicate changes and can record corresponding events.

LEC Communication Interface

Manager

I2 I3

I1

Predicates

Events

A3A2

A1

S1S2

Internal
Context

SpotlightAttached SHC

Exposed State

Fig. 6: The modular architecture of a LEC. Each unit is
composed of different modules: I1, I2 and I3 are Interpretation
Modules; A1, A2 and A3 are Abduction Modules; S1 and S2
are Simulation Modules.

As device manufacturers and controller providers detain
specific knowledge and experience regarding the internal
logic and interpretation of data recorded by their Observable
Components’ sensors, it is logical to allow them to define
the characteristics and implementations of the modules that
specialize the LEC’s reasoning and explanation based on these
data. Hence, each OC comes with a specification that defines
its explanation-related artefacts, to be integrated by LECs. The
OC specification is formatted as shown in Figure 7 (similar to
the universal IoT spec in [17]). Namely, the OC specification,
contains: i) an OC id; ii) information for integrating the
OC within the smart home (e.g. sensor and actuator specs
based on a standard description – out of scope); iii) the
LEC-specific modules (i.e. available classes implementing the
LEC’s Abduction, Interpretation and Simulation modules);
and, iv) OC characteristics (e.g. manufacturer, version, type).
The LEC-specific modules (iii) are the most relevant to our
proposal as they allow customizing a LEC for the OC.

OC Description
Component ID
Standard Description
LEC
Characteristics

LEC Description
name
Abduction
Interpretation
Simulation

OC Characs
location
manufacturer
version
......

Abd. Module Desc.
name
Class
Characs

Int. Module Desc.
name
Class
Characs

Sim. Module Desc.
name
Class
Characs

0..n

0..n

0..n

Fig. 7: The OC description is enriched with the addition of
the LEC description, containing the characteristics and classes
of its specialized modules.

Subsequently, an OC’s integration process occurs as shown
in Figure 8. When the user deploys a new device, the smart
home discovers it automatically, e.g. as supported by many
service-oriented management solutions. A typical solution,
which we adopt here, is to employ a Naming and Directory
service, or registry, that keeps track of all system components
(i.e. identities and properties) and that any component can
access to learn about new additions. The Spotlight observes
this registry periodically, hence noticing an OC addition and
fetching its exposed properties (based on the OC specification,
Fig. Figure 7). The Spotlight then creates a new LEC and
instantiates the specific modules for Abduction, Interpretation
and Simulation. Upon its creation, the LEC connects to the
newly added OC. Once the connection established, the LEC
notifies the Spotlight, which adds the LEC to its own registry.

OC updates and removals follow the same process: changes
are noticed via the Naming and Directory service and propa-
gated into the associated LEC; the Spotlight registry may be
updated accordingly.



Fig. 8: Adding a LEC

IV. IMPLEMENTATION AND EXAMPLES

A. Implementation Description

To demonstrate the feasibility of the proposed explanatory
system architecture and to provide illustrative examples, we
developed a proof-of-concept demonstrator based on a cyber-
physical smart home model (Fig. 9. It consists of a physical
house model equipped with various sensors and actuators (i.e.
GrovePi thermometers, heaters, windows, lights), which are
connected to different Raspberry Pi (i.e. one per room). All
Raspberry Pi are connected to a central NUC station.

Plugged-in devices and corresponding OCs are administered
via a Local Control Manager, on each Rasberry Pi (RPi).
Within the central NUC, a Central Manager keeps track of all
connected RPi and exposes a Naming and Directory service,
i.e. a registry that keeps track of all known devices [6]. Com-
munication between the Central and Local Managers relies
on REST requests. This constitutes the autonomic system
of the house model (e.g. that monitors and controls room
temperatures, windows and lights).

Device

Device

SpotlightCentral
Manager

REST

MQTT

Broker

Web Server

REST

Local LEC

Manager

REST

Local Control

Manager

REST

OC OC OCLEC LEC LEC

RPINUC

GUI

Fig. 9: Overview of prototype demonstrator. Inter-host com-
munications are performed either via REST (orange arrows)
or MQTT (blue arrows). Each RPi hosts its own database, as
shared memory for exposing OC data to the LECs.

On top of the autonomic system, we implemented the
explanatory components described in Section III: the Spotlight

is deployed on the central NUC and LECs are hosted on the
RPi, where the corresponding OCs are located. On each RPi,
a local LEC Manager is responsible for the LECs’ lifecycles
(i.e. allowing the Spotlight to create and customise them,
via a REST interface). After the initial LEC creation and
registration, communications between the Spotlight and the
LECs relies on the MQTT protocol [18], with each component
listening on a specific channel named after its unique ID.

LECs obtain monitoring data from OCs via a shared mem-
ory (i.e. Redis database). On each RPi, hosted OCs write their
observations into a dedicated stream field in the database;
corresponding LECs listen to this stream and process the data.
A similar construct is implemented in the central unit (NUC),
where the Spotlight records its state on a stream field in a
Redis Database and access the exposed naming and directory
service of the Central Manager. This usage of a database as a
shared memory for observation allows to conveniently unify
the observable interfaces required by the explanatory system.

To illustrate the defining features of our architecture, i.e.
its runtime adaptation, knowledge revision and self-awareness
integration into the explanatory reasoning, we provide two
scenarios representative of typical smart home situations.

B. Example 1: runtime integration

The first scenario demonstrates how our explanatory system
manages the integration of a new device and updates its
explanatory capabilities accordingly. In the initial situation,
the user feels that a room is colder than expected and queries
the system about this situation. From this starting point, we
develop three possible outcomes, as shown in Figure 10.
For more details, step-by-step versions of the presented tree
outputs of our explanatory system are available online at
https://explainableai.fr/ACSOS22.

1) Figure 10a: In the first outcome, the incoming expla-
nation request is transcribed as (cold(room1),−10), then
forwarded by the Spotlight to the LEC attached to the Tem-
perature Controller in room1. The questioned LEC uses its
abductive module to propose that the cause may be that
a window is open – this is transcribed by the proposition
deviceType(window) ∧ open(). However, in this case, there
is no smart window component in the system. Therefore,
this hypothesis cannot be further explored, resulting in a
“give-up” LEC response and corresponding node in the tree
output. As the Temperature Controller’s LEC can find no other
hypothesis, the conflict is discarded. The final result of this
situation is that the explanatory system can propose a possible
cause, while possessing no further competence to explore it.
In this case, it is possible to integrate the user into the loop
by asking him/her directly to confirm whether a window is
open: the tree output can be transcribed as “It is cold because
a window may be open; the system cannot confirm whether
this hypothesis is true.”

2) Figure 10b: The initial situation is identical to the
one in the previous example. However, in the meantime, the
user installed a smart window into the system. Hence, the
hypothesis that the Temperature Controller’s LEC proposes,



(a)

(b)

(c)

Fig. 10: Different explanatory tree outputs of D-CAS. The outcomes depend on system capabilities: (a) no smart window is
present. (b) a smart window is added, allowing the system to confirm its hypothesis. (c) a simulation module is added to the
window, enabling to discover consequences of the window’s closing.

(a)

(b)

Fig. 11: Two scenarios illustrating knowledge revision. (a) the LEC revises its definition of cold, and is able to include this
change in the subsequent reasoning. (b) the LEC changes its belief and assumes that the reported measures are erroneous,
leading it to consider that the thermometer may be failing.



deviceType(window)∧ open(), fits within the knowledge of
the newly added window’s LEC, and can be further investi-
gated. The new LEC confirms that the window is open, but
has no module for determining a causal hypothesis for this
state, or an action that could revert it. Therefore, this line-of-
reasoning is, in the end, discarded. This time, with the addition
of the smart window, the explanatory system is able to confirm
to the user that the proposed hypothesis of the open window
is coherent with its observations, but can go no further. The
transcribed output is: “It is cold because a window is open;
the system cannot further investigate this hypothesis.”

3) Figure 10c: The initial situation is identical to the
previous example. This time, the window’s LEC has been
updated with a new simulation module. This addition allows
the window’s LEC to propose the idea of closing the window
to effectively end the conflict that it had been questioned about,
i.e. the window being open. The simulation of this action
can be operated by a digital twin of the house, or directly
by the simulator module of the window, depending on their
capabilities. In case no module can handle the simulation of
the proposed action, it is possible that the system asks the
user to perform the action instead. By simulating the window’s
closing, the system realizes that the room is no longer cold.
However, another conflict is now raised by the CO2 sensor, as
the concentration becomes higher than the desired limit. In the
end, the addition of the simulation capabilities to the window’s
LEC allows the system to improve its reasoning output and
confirm that the window was indeed the cause for the low
temperature. At the same time, the system is able to identify
that the window was open to prevent the CO2 concentration
from being too high. Here, the output is transcribed as: “It is
cold because the window is open. The window is open because
closing it would provoke high CO2 concentration.”

C. Example 2: Knowledge revision

Self-observation and its interpretation is a key element to
design an explainable smart home system: we argue that
it is necessary that the system integrates its own changes
and modifications into its reasoning to achieve explainability.
In our proposed architecture, this is achieved by including
within LECs local managers that record observed changes as
events, which can later-on be processed and integrated into
the D-CAS algorithm without additional input from the user.
To demonstrate the benefits of this approach, we present in
Figure 11 the tree outputs of two situations where knowledge
revision is integrated into the explanatory output.

1) Figure 11a: In a first situation, the user feels uncom-
fortably cold in the room. He/she inquires the system for the
reason, which corresponds to the request (cold(room1),−50).
The Spotlight identifies that the relevant component to process
this request is the LEC attached to the Temperature Controller
and hands the inquiry to it. However, the LEC cannot confirm
that the conflict is occurring: its cold predicate compares
temperatures to a given threshold, e.g. 18◦C, while recent
recorded events show a temperature of 18.2◦C. As the dif-
ference is small, the intensity of the request, −50, suffices to

make the Interpretation module to revise its knowledge and
modify the threshold, increasing it to 18.5◦C; this change is
recorded by the LEC’s manager in a dedicated event. As the
conflict is now confirmed, the LEC continues to process the
request. An abduction module proposes that a recent predicate
change is the reason for the current situation. This hypothesis
is considered, and confirmed by the temperature controller’s
LEC: the recent change of the meaning of cold matches this
hypothesis. The final output of the explanatory system is that
it is cold in the room because the notion of cold had to be
changed to correspond to the user’s perception of the situation.

2) Figure 11b: In this second situation, the initial setup
is similar to the previous example. Again, the Temperature
Controller’s LEC does not confirm that it is cold in the room:
its measures indicate that the room is at 28◦C. This time, the
difference between the measures and the threshold (18.5◦C) is
too large to consider increasing the cold predicate’s threshold.
However, given that the reported temperature is abnormally
high, the LEC may revise its definition of the erroneous

predicate, to consider that the currently recorded event is based
on false reports. By doing so, the LEC can now assume that
the temperature is indeed cold, and proceed with the rest of the
process. Its abduction module first proposes that the erroneous
measure can be the cause of the perceived cold. In the ensuing
call, it proposes that the erroneous measure originates from
a failure in the reporting thermometer. Hence, the request is
forwarded to the thermometer’s LEC, which confirms that it
may be failing to report the correct temperature, but cannot
propose further causal hypotheses or actions for this state.
Hence, this line-of-reasoning is now discarded. Following the
D-CAS process order (Cf. subsec. III-B, detailed in [7]), the
request goes back to the Temperature Controller’s LEC to find
other hypotheses. The abduction module then proposes that
the heater being turned off may be a cause for the room’s low
temperature, but this lead is discarded as the heater’s LEC
finds that the heater is switched on. Back to the Temperature
Controller’s LEC, the abduction module now proposes that a
window may be open, but this lead is discarded as the system
does not contain a smart window to further investigate this
hypothesis. In the end, the system’s output corresponds to
the following text output: “The room may be cold because of
an erroneous measure, which originates from the thermometer
failure. Other hypotheses, such as the heater being turned off
or the window being open, could not be confirmed.”

V. CONCLUSIONS AND PERSPECTIVES

This paper proposed a generic, modular architecture for self-
explanatory systems. Here, the knowledge necessary for causal
reasoning and explanation is decentralized: Local Explanatory
Components (LECs) monitor each observable component (OC)
in the smart home, interpret their variables and formulate
causal or simulation hypotheses. A central coordinator, the
Spotlight, integrates their local reasoning into a system-wide
explanatory process and explanation to users. While LECs are
OC-specific, the Spotlight is generic and has no access to



knowledge of the system’s state. This renders our proposal
applicable across widely heterogeneous explanatory systems.

By introducing the proxy of events and predicates, from
which Boolean propositions are constructed, our architec-
ture preserves knowledge locality: components communicate
Boolean propositions without having to disclose their inner
logic or their proposition meanings. This allows to preserve
privacy of the components’ functioning while enabling system-
wide coordination and explanation generation.

Our system is able to handle runtime adaptation, which is
a prominent feature of Autonomic Computing: it is possible
to add/remove or update devices or LEC modules at runtime,
so as to extend or evolve the system’s explanatory capabil-
ities. Also, the LECs’ self-observation features are directly
integrated into the explanatory process and treated equally as
observations from the OC. This allows the system to generate
explanations from self-awareness considerations, for example
understanding that some measures are erroneous or do not
correspond to the user’s perception of the situation.

The viability of our architecture was illustrated via a pro-
totype implementation and several realistic scenarios. Results
highlighted the principal advantages of the proposed architec-
ture: ability to explain widely heterogeneous system compo-
nents; ability to extend the system’s explanatory capabilities
when new system components are added; and ability to evolve
its explanation vocabulary when the context changes (e.g. user
preferences or defective sensors).

Future work may focus on developing and improving in-
terpretation, abduction and simulation methods. Interpretation
Modules may incorporate outlier analysis methods [19] to
detect events; or implement online learning of predicates by
using contrast-based operations [20]. Similarly, advances in
XAI such as feature relevance can be considered to provide
hypotheses for abductive inference; while dedicated twin home
simulators [21] can be used as simulators and added to the
explanatory system.

Another area of future research is the integration of user(s)
into the explanatory reasoning, by adding a LEC “attached”
to the user (one to each user) which would interpret the user’s
behavior and reactions as events and predicates.This feature
would allow the system to formulate explanations such as “this
month’s power consumption is low because you were away for
two weeks” or “the room is cold because another user changed
the setting yesterday”.

Overall, our architecture provides an initial basis for devel-
oping more advanced explanatory systems, its genericity al-
lowing to consider applications them to further CPS domains.
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