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Abstract

Complex organisms, such as multi-cellular ones, have neither
emerged spontaneously, nor evolved directly, from a disor-
ganised mass of quarks. Stable intermediary sub-systems,
like atoms and uni-cellular organisms, had to occur first
and serve as reusable blocks for more complex systems to
build upon. The occurrence of structured systems, featur-
ing internal diversity, from uniform self-adaptive sub-systems
is a key phenomenon to study in this context. We be-
lieve this phenomenon relies on the interactions among self-
adaptive sub-systems, both at the micro-level (directly be-
tween sub-systems) but most importantly via macro-levels
(indirectly via aggregate information and control from/to all
sub-systems). To study this, we have developed a hierarchi-
cal control simulator based on self-adaptive cellular automata
(CA). This paper presents our Holonic Cellular Automata
(HCA) simulator, and the preliminary results showing the oc-
currence of structure / diversity from micro-macro feedback
loops among self-adaptive CAs starting in the same states.
This provides a promising basis for further investigations into
the range of possibilities concerning structure creation, as a
key enabler for the emergence of complex systems.

1 Introduction
Living organisms, especially multicellular ones, cannot be
understood if studied as large collections of self-organising
quarks – e.g. Simon (1962), Reilly and Ingber (2018). Nor
have they emerged spontaneously (or evolved directly) from
disorganised quarks. Stable atoms had to first occur from
sub-atomic particles, then form stable unicellular organisms,
and only then could multi-cellular creatures occur.

Similarly, complex adaptive artificial systems, e.g. smart
cities and power grids, are difficult to design as monolithic
processes that self-assemble and evolve from huge collec-
tions of atomic resources (e.g. fine-grained algorithms). In-
termediary sub-systems must be designed to self-assemble
at smaller scales first; then provide building blocks for pro-
gressively more complex systems, offering wider functions–
e.g. Simon (1962), Powers (2008), op Akkerhuis (2010).

Morphogenetic Engineering, Doursat et al. (2012), em-
phasises the key role of structure and diversity in self-
organising complex systems – e.g. developing an anthill

rather than a sand dune; an animal rather than a cauliflower;
a human society rather than a school of fish; a smart home
rather than an agent system playing prisoner’s dilemma.

We aim to study how structured heterogeneous systems
can occur from uniform self-adaptive sub-systems; and how
this process can be engineered and controlled. We believe
that multi-level feedback control is key to such develop-
ments, by shaping various interactions among self-adaptive
sub-systems, both at the micro-level (directly between sub-
systems) and most importantly via macro-levels (via aggre-
gate information and control from/to all sub-systems).

We developed a hierarchical control simulator based on
cellular automata (CA) with adaptive rules. This was based
on our theoretical work, Diaconescu et al. (2016), on key
properties for engineering holonic systems (i.e. recursively
self-encapsulated hierarchies). The presented Holonic Cel-
lular Automata (HCA) simulator organises CA into several
levels (sec. 4), which interact via: i) aggregate state infor-
mation (bottom-up); and ii) adaptation control signals (top-
down). CA at different levels execute different rule sets, at
different paces. Each CA at a lower level Lm is mapped to
a single cell of a CA at a higher level Lm+1. The entire
state of a lower CA is aggregated (based on the percentage
of its live cells relative to a threshold) and used to set the
state of the corresponding cell in a higher CA (live or dead).
Conversely, the state of each cell in a higher CA controls
the rule adaptation of the corresponding lower CA. These
interactions are replicated between successive levels, up to
the topmost level which only executes static rules. CA exe-
cute in parallel, with aggregate states and adaptation control
travelling bottom-up and top-down through the HCA levels.

The simulator resembles hierarchical CA previously used
for modelling complex systems (sec. 3). The main dif-
ference is in transforming mere bottom-up data abstrac-
tions into complete feedback loops between levels, lead-
ing to multi-level control and self-adaptation. With respect
to the multi-level model categorisation in Uhrmacher et al.
(2005), the proposed HCA simulator relies on a discrete, de-
terministic and qualitative model; with heterogeneous be-
haviours, and upward and downward causation between lev-



els. Preliminary results show how structure / diversity of
CA states can occur and develop based on such inter-level
feedbacks (micro-macro) among self-adaptive CA. Result-
ing structures depend on the CA rule sets and on several
configuration parameters – e.g. aggregate state thresholds
and relative execution speeds, at all levels.

The main contributions of this paper include1:

• highlight reusable engineering principles for developing
complex systems via multi-level adaptive control;

• propose a multi-level adaptive control simulator, based on
Holonic Cellular Automata (HCA);

• show encouraging preliminary results supporting both the
engineering principles’ viability and the simulator’s use-
fulness as an experimental platform for studying them.

This provides a promising basis for further investigations
into the processes leading to structure creation.

2 Holonic Structure Concepts
We use the term ‘structure’ in a twofold manner. Firstly,
single-level state structure refers to the differentiation of
states of sub-systems (within one level). In the HCA, this
occurs when different CA groups at the bottom level L0 go
through different states (within identical state spaces). Sec-
ondly, multi-level structure refers to the differentiation of in-
terrelations among sub-systems. In the HCA, these are con-
crete CA levels, with higher CA computing aggregates of
lower CA states (Fig. 1). Multi-levels can be implemented
either via actual sub-systems that represent different levels
(explicit levels), or as mere conceptual abstractions (implicit
levels). In the former case (explicit), higher systems (supra-
systems) aggregate data from, and send control signals to,
lower systems (sub-systems). E.g., in neural networks, ac-
tual neurons at higher levels (central) monitor and control
neurons at lower levels (somatic) – Holst and Mittelstaedt
(1950), Kramer et al. (1981), Diaconescu et al. (2018). In the
latter case (implicit), supra-systems are mere abstractions,
representing processes of data aggregation and adaptation
control from and to sub-systems. E.g. opinion formation in
social networks; or pheromone traces in ant colonies.

The main properties common to both kinds of multi-level
structures are (Diaconescu et al. (2016)): i) data aggregation
(bottom-up), with information loss; ii) specific processing of
data aggregates (optional); iii) feedback control (top-down),
reacting to aggregates; iv) different paces of cycles – aggre-
gation, process and control – at different levels. We refer to
such systems as ‘holonic’ – Simon (1962), Koestler (1967).

The HCA simulator features built-in multi-level structure
(explicit), where the number of levels, CAs per level and
level configurations can be varied. The aim is to study the

1Please see https://github.com/adadiaconescu/hca/wiki for
further documentation, simulation videos and experimental data.

Figure 1: HCA Multi-level Structure (example for 3 levels)

formation of micro-level state structures, depending on such
variations. Future work can also study the formation of up-
per levels and inter-level feedbacks, rather than fixing them.

3 Related Work
We focus on related work from two main research areas:
multi-scale control systems (theoretical) and hierarchical
cellular automata (modelling and simulation).

On the theoretical side, several research works mod-
elled complex systems (e.g. organisms) as hierarchies of
self-adaptive self-organising sub-systems, based on feed-
back controls – e.g. Simon (1962), Koestler (1967), Simon
(1996), McGregor and Fernando (2005), Powers (2008),
Flack (2017), Reilly and Ingber (2018). Information ab-
straction is a key feature of upward causation – e.g. in
McGregor and Fernando (2005) via redescriptions of lower
levels for higher levels; or in Flack (2017), via collective
coarse-graining. Downward causation Flack (2017) was
also identified as phenomena governing sub-system adap-
tations, based on collectively-computed macro-states.

Merging these two principles – upward abstraction and
downward causation – leads to multi-level control loops,
e.g. as promoted by Hierarchical Perceptual Control The-
ory (HPCT) Powers (2008) (for nervous systems): “each
perceptual signal at one level in the hierarchy is a function
of multiple perceptions at a lower level. Control of a percep-
tion at one level requires adjustment of reference signals sent
to lower systems, which control the perceptions on which the
state of the higher-level perception depends.” Our HCA sim-
ulator implements this, for studying how multi-level control
can produce state differentiation (structure).

On the modelling side, Hierarchical Cellular Automata
Dunn (2010) interconnect multi-level CA for simulating
complex phenomena as interrelated processes, at multiple
scales – e.g. Adamides et al. (1992) for large-scale chip
integration; Weimar (2001) for catalytic surface reactions;
Dunn (2010) for landscape ecology; Dascalu et al. (2011) for
eplidemiology; or Qin et al. (2018) for visual saliency. CA
at sub-levels are coupled to CA at supra-levels via abstrac-
tion functions, and in some cases supra-CA are also coupled
to sub-CA (e.g. Weimar (2001)). The key difference in our
case is that the HCA’s macro-micro couplings are control
signals for rule adaptations (downward causation).

Multi-level models have also been proposed based on the
multi-agent paradigm, to analyse existing complex systems



– e.g. in systems biology, Montagna and Omicini (2017).
Our aim is to offer a generic simulator for studying multi-
level phenomena and help identify key design principles.

4 Holonic Cellular Automata (HCA)
4.1 Overview and Notation
A Holonic Cellular Automaton (HCA) consists of several
levels (Lk), each containg one or several CA (CAk,i). Table
1 summarises the main HCA concepts and notations.

CA at adjacent HCA levels exchange two kinds of infor-
mation (subsec. 4.2). Firstly, bottom-up communication
transmits aggregate states (Ok,i) of sub-CA to set the cell
states of supra-CA (CSk+1,j,i). Secondly, top-down com-
munication transmits the cell states of supra-CA as control
signals (or goals Gk,i = SCk+1,j,i) to sub-CA, which adapt
their active rules (Rk,i). Inter-level communication relies
on a predefined mapping – map(CAk,i;Ck+1,j,i) – between
each sub-CA (CAk,i) and a cell of a supra-CA (Ck+1,j,i).
Fig. 2 exemplifies a 3-level HCA – with bottom-up transfer
of state aggregates (O0,i from L0 to L1; and O1,1 from L1 to
L2); and top-down transfer of control goals (G1 from L2 to
L1; and G0 from L1 to L0). It also illustrates mappings be-
tween a CA cell at L2 and a CA at L1 (orange); and between
two cells at L1 and two CA at L0 (blue and yellow).

Figure 2: Exp1: Initialising 3-level HCA, SCA1,1 = Null

When started, an HCA is executed in cycles, each cycle
triggering the sequential activation of adjacent HCA levels.
When a level is activated, all CA at this level are executed in
parallel (within one simulation step). Each CA in an active
level: i) exchanges information with its mapped CA at the
supra- and sub-levels (as above); ii) sets its rules (Rk,i) de-
pending on its goals (cf. 4.2); and steps (executes its rules).
When all CAs have finished executing, the level is deacti-
vated and the next upper level is activated (cf. 4.2). Each
cycle starts by activating the bottom level (L0) and finishes
by activating the top level (LM ); after that, the cycle restarts.

In the presented experiments, all CA at the bottom level
start in the same state, then step in parallel; for experimental
repeatability reasons, they synchronise (wait for each other)
between steps. Still, the HCA supports starting CA at se-
quential steps (hence differentiating initial states) and run-
ning CAs asynchronously. All CA are non-toroidal (live

Notation Description
Lk Level k, with k = 1..M , M the number

of HCA levels
CAk,i Cellular Automata i at level Lk,

i = 1..Nk, Nk the no. of CA at Lk

size(CAk,i) Size of CAk,i in nr. of cells,
size(CAk,i) = Szk,i = Xk,i ×
Yk,i, Xk,i ≡ width, Yk,i ≡ height

Ck,i,s Cell s of CAk,i , s = 1..Szk,i
SCk,i,s State of Cell Ck,i,s , SCk,i,s ∈ {0, 1},

0 ≡ false/dead, 1 ≡ true/live
Ok,i Aggregate State of CAk,i

Thk Threshold for calculating Aggregate
States of all CAk,i at Lk

Gk,i Goal of CAk,i; Gk,i ∈ {0, 1}
Rk,i Active Rules of automaton CAk,i

map(Ck,i,s;
CAk−1,j)

Mapping between cell Ck,i,s and au-
tomaton CAk−1,j ; implies bottom-up
transfer of aggregate state and top-
down transfer of goal (subsec. 4.2)

SCAk,i Macro-State of CAk,i (set of states of
all its cells); SCAk,i = {SCk,i,s |
∀ s = 1..Szk,i }

StpMk Step Multiplier of level Lk– the num-
ber of activations of Lk after which
CAk,i actually execute Rk,i.

Table 1: Main HCA Concepts and Notations

boundaries). This helps to break symmetry at higher levels,
yet it can be a reasonable assumption (e.g. environmental
differentiation) and can be changed in future experiments.

4.2 Inter-level Mapping and Communication
Aggregate states are transferred between sub- and supra-
levels as shown in Eq. 1. The top level (LM ) is not con-
cerned by this transfer. To simplify, we only used one CA at
L1 and L2 in our experiments: each CA0 maps to one cell
at CA1; CA1 maps to the one cell of CA2.

SCk+1,i ← Ok,i , i = 1..Nk , map(Ck+1,i;CAk,i) (1)

A CA’s aggregate state is calculated based on the CA’s
number of live cells relative to a threshold (Eq. 2).

Ok,i =


1, if

Sk,i∑
s=1

SCk,i,s >= Thk

0, otherwise

(2)

Goals are sent from supra- to sub-levels as in Eq. 3. The
bottom level (L0) is not concerned by this transfer.

Gk,i ← SCk+1,i, map(Ck+1,i;CAk,i) (3)



4.3 HCA Stepping Cycle

Several schemes are possible for activating HCA levels. Pre-
sented experiments were based on a sequential bottom-up
stepping cycle (Fig. 3, for a 3-level HCA) – going from the
bottom level through the middle level(s) up to the top level,
then restarting. Algorithm 1 defines the procedure that an
active level executes. When the experiment starts, all CA
are set to initial states and L0 is activated. We detail the
stepping sequence below, for 3 levels (extensible to M ).

When L0 is activated, it checks if its current step index
allows it to run (depending on its step multiplier StpM0). If
so, then CA0,i get their goals (G0,i) from L1 and adapt their
rules accordingly (cf. 4.4); execute the rules; and calculate
their state aggregates (O0,i, Eq. 2). L0 then activates L1

and deactivates itself. When activated, L1 checks if its step
index allows it to execute. If so, then CA1,j get their cell
states from the aggregates at L0 (Eq. 1); gets their goals
(G1,j) from the cell states of CA at L2 (Eq. 3); and adapt
their rules accordingly (cf. 4.4). They then execute their
rules and calculate aggregates (O1,1). L1 then activates L2

and deactivates itself. When L2 is activated, if its step index
allows it to execute, then CA2,i get their cells’ states from
the aggregates of CA at L1, and execute their static rules. L2

then activates L0 and deactivates itself. The cycle restarts.

Figure 3: Stepping Cycle between CA Levels

4.4 CA Rules

Different CA rules operate at different HCA levels. CA rules
calculate each cell’s next state based on its current state and
the state of its four neighbours (top, down, left, right). We
use two kinds of rules: adaptive (for bottom and middle lev-
els) and static (for the top level). Adaptive rules swap be-
tween two sets of actual CA rules: i) expansive (RExp) –
increasing the number of a CA’s live cells; and ii) regressive
(RReg) – decreasing the number of a CA’s live cells. A CA
controlled by adaptive rules activates RExp if its goal is 1
and activates RReg if its goal is 0 (Eq. 4).

Rk,i,active =

{
Rk,Exp if Gk,i == 1

Rk,Reg, if Gk,i == 0
(4)

Algorithm 1 CA Stepping at Level Lk

1: procedure LEVEL INIT PROCEDURE (LK )
2: stepIndexk ← 0
3: for CAki ∈ Lk do
4: SCAk,i ← init state . init. all CA states
5: while Lkactive == true do
6: for CAk,i ∈ Lk do
7: Execute CA Step Procedure for CAki

8: stepIndexk ← stepIndexk + 1
9: if k == M then . if at top, restart from L0

10: k = −1
11: Lk+1active == true . activate next level up
12: Lkactive == false . deactivate this level
13: procedure CA STEP PROCEDURE (CAk,i)
14: if stepIndexk 6= StpMk then
15: exit procedure
16: if isBottomLevel == false then . get aggregates
17: SCAk,i ← Aggregate States from sub-CA
18: if isTopLevel == false then . get goals
19: Goalk,i ← Goals from State of supra-CA
20: if Goalk,i == true then . adapt CA rules
21: Rulesactive ← Rexp

22: else
23: Rulesactive ← Rreg

24: execute Rulesactive
25: calculate Aggregate State of CA (for supra-CA)

Experiments were run on a 3-level HCA, with L0 using
adaptive rules R0,Exp and R0,Reg (Fig. 4); L1 using adap-
tive rules R1,Rxp and R1,Reg (Fig. 6); and L2 using static
rules R2,Inv. Fig. 5 illustrates the behaviour of R0,Exp and
R0,Reg , for a CA of size 21x21cells, starting from an ini-
tial state of 5 live cells (central cross shape), and from a
full board state, respectively. R2,Inv, at L2, simply inverses
the current state of each cell: if SC2,i,t == 1 (live) then
SC2,i,t+1 == 0 (dead); else C2,i,t+1 == 1 (live).

Figure 4: Bottom Level (L0) Rules: a) expand; b) regress

5 Experimental Results for a 3-Level HCA
5.1 Common Settings
We focus the presentation on the 3-level HCA used for ex-
periments (Fig. 2), even if the concepts, notations and algo-
rithms apply to HCA with any number of levels (M ).

The bottom level L0 consists of 32 CA – numbered from
CA0,1 to CA0,32 – each of size 21x21 cells, arranged in an



Figure 5: Behaviour of Rules at L0: a) expand; b) regress

Figure 6: Middle level (L1) Rules: a) expand; b) regress

8x4 matrix (for ease of visual mapping to cells in CA1,1). To
help discuss the impact of goals from L1 on CA0,i’s states,
we categorise CA at L0 into three types (Fig. 7):

• CA0,Corners: CA0,i; with i = {1, 8, 25, 32};

• CA0,Border: CA0,i; i = [2..7]∧{9, 16, 17, 24}∧[26..31];

• CA0,Core: CA0,i; with i = [10..15] ∧ [18..23].

Figure 7: CA Types at the Bottom Level (CA0)

The middle level (L1) has a single CA (CA1,1) of size 32
cells (8width x 4height) – with each cell mapped to a CA at
L0: map(CA0,i;C1,1,i), i = 1..32. The top level (L2) has a
single CA (CA2,1) of size 1 cell – mapped to the CA at L1:
map(CA1,1;C2,1,1). The goals of L0 and L1 are initialised
G0 = G1 = 1 (meaning that R0,Exp and R1,Exp are active).
Goals are irrelevant for L2, which always uses R2,Inv.

The following parameters were selected (more or less) ar-
bitrarily for the presented simulations but can be varied for
further experiments (future work): the size and number of
CAs at L0, the expanding/regressive rules and initial states
at each level, non-toroidal CAs and boundary conditions.

5.2 General Behavioural Analysis
The above settings lead to four possible states at CA1,1 (Ta-
ble 2) – Null (all cells dead), Full (all cells alive), Core
(only cells with 4 neighbours are alive) and Cross (only
cells with 3 or 4 neighbours are alive). The state transi-
tion scheme depends on further configurations (i.e. Thk and
StpMk). State dynamics at the middle level (L1) are key to

CA1,1 State ID Null Full Core Cross

CA1,1 State
No. Live Cells 0 32 12 28
% Live Cells 0% 100% 37.5% 87.5%
G0,Corners 0 1 0 0
G0,Border 0 1 0 1
G0,Core 0 1 1 1

Table 2: States of the Middle Level (CA1,1)

the goal patterns (G0,i) set at L0, which drive state differ-
entiation at L0 (SCA0,i) and hence the occurrence and dy-
namics of macro-state structures. They also drive the goals
at L1 (G1,1), via aggregates O1,1 sent to L2.

The states of CA1,1 (at L1) set the goals of CA0,i (at
L0) (as in Table 2), and hence their active rules – R0,Exp or
R0,Reg . E.g., when SCA1,1=Null, CA0,i receive G0,i = 0
and set R0,Active = R0,Reg . Or, when SCA1,1 = Cross,
then CA0,Core and CA0,Border get G0 = 1 (activate
R0,Exp), while CA0,Corners get G0 = 0 (activate R0,Reg).

Hence, CA1,1’s Null and Full states (at L1) do not
cause any differentiation at CA0,i (at L0). Yet, importantly,
CA1,1’s Core and Cross states (at L1) lead to CA0,i’s state
differentiation (at L0) among its three groups – CA0,Core,
CA0,Border and CA0,Corners. Different patterns of Core
and Cross states at L1 lead to various macro-state struc-
tures and dynamics at L0. Each CA group at L0 can con-
verge to any of four state types: 1) dead: no live cells; 2)
alive stuck: live cells, but no change; 3) oscillating: cy-
cling through a state sequence; and 4) chaotic: following an
aleatory state sequence. So far, we observed diverse combi-
nations of the first three state types (subsec. 5.3 and 5.4).

Initial simulation steps are common to all experiments. In
brief, CA1,1 and CA2,1 start in Null state and CA0, i in
an initial state with 5 live cells (1.13% of 441 cells, below
Th0=10%, hence Ok,i=0). When R0,Exp produces enough
live cells in CA0,i (bottom) to cross Th0, then O0,i=1 are
sent to CA1,1 (middle), which passes to Full. Hence, ag-
gregate O1,1=1 is sent to CA2,1 (top), which also passes to
Full. Rules R2,Inv (top) inverse CA2,1’s state 1 (live) to 0
(dead), hence sending goal G1 = 0 back to CA1,1 (middle).
CA1,1 adapts its rules to R1,Reg , executes them, and passes
from Full to Core. Hence, it sends G0=1 to CA0,Core;
and G0=0 to CA0,Corners and CA0,Border (bottom). The
sequence from here depends on experimental settings.

The exact dynamics of the L0 macro-state structures de-
pends on: a) how fast (number of steps) RExp and RReg at
L0 and L1 take aggregate states above and below the thresh-
olds Th0 and Th1, respectively, from given states; b) the ac-
tual values of Th0 and Th1 relative to the CA board sizes;
and, c) the relative differences in execution times at L0, L1

and L2, based on StpM0, StpM1 and StpM2, respectively.



Figure 8: State Transitions of Middle level (L1)

5.3 Macro-States with One Oscillation
Experiment Configuration. Aggregate state thresholds
were set to Th0 = 0.1 (at L0) and Th1 = 0.5 (at L1).
Hence, CA0,i at L0 must have more than 10% live cells to
send a ‘live’ aggregates to L1 (O0,i=1); and CA1,1 at L1

over 50% live cells to send O1,1=1 to L2. Step multipliers
were set to 1 for all levels (StpM0 = StpM1 = StpM2 =
1), meaning that CA at all levels executed at each cycle.

State Transitions at L1 and L2. Fig. 8 shows CA1,1’s
state transitions (at L1). In short, CA1,1 starts in Null (for 4
steps); then passes through Full (1 step) and Core (1 step).
From step 7, it oscillates between Cross and Core states
for the rest of the experiment. These transitions set the goal
patterns G0,i at L0: for CA0,Corners, G0 changes from 1
to 0 at step 8, then remains unchanged; for CA0,Border, G0

changes from 1 to 0 at step 8, then oscillates between 0 and
1; and for CA0,Core, G0 remains unchanged at 1. Based on
CA1,1’s ensuing aggregates (O1,1), G1 changes from 1 to 0
at step 7, then oscillates between 0 and 1.

Macro-State Structure at L0. The macro-state structures
‘emerging’ at L0 are summarised in Tables 3 and 4. The
HCA behaviour converges to: CA0,Core get stuck in a live
state; surrounded by CA0,Border that oscillate between two
states; and with the CA0,Corners in dead state.

Fig. 2 depicts the HCA in one of its ‘starting-up’ states,
where CA0,i (at L0) have not yet reached their first ‘live’
aggregates (O0,i=1); and hence the HCA’s inter-level feed-
backs (via goal changes and rule adaptations) have not yet
been triggered. Hence, all goals are set to 1, CA1,1 and
CA2,1 are in Null, and do not yet send goals to sub-levels.

In Table 3, Diversity Count shows how many diverse
states a CA creates in an experiment; Final Behaviour is the
attractor state or oscillatory pattern to which the CA con-
verges, after 1st Step of Final Behaviour. E.g., CAi,Corners

create 10 diverse states before dying off, at step 11.
Table 4 shows snapshots of the most important HCA

states, after the inter-level feedbacks were triggered:

• (a) CA0,i’s aggregates (bottom) cross Th0=10% for the
1st time, sending O0,i=1 to CA1,1 (middle). This leads to
SCA1,1=Full (middle), sending G0,i=1 to L0 (bottom),
and O1,1=1 (100% > Th1=50%) to L2 (top). This leads
to SCA2,1=Full (top), which is inversed via R2,Inv to

SCA2,1=Null (shown), hence sending G1=0 to CA1,1,
which activates R1,Reg;

• (b) CA1,1 (L1) runs R1,Reg and goes from Full to Core.
It sends to L0: G0,Core=1 and G0,Border=G0,Corners=0.
It also causes SCA2,1=Null (37.5% < Th1 = 50%),
which is inversed via R2,Inv to SCA2,1=Full (shown),
sending G1=1 to CA1,1, which activates R1,Exp;

• (c) CA1,1 runs R1,Exp and goes from Core to Cross.
It sends to L0: G0,Core=G0,Border=1 and G0,Corners=0.
It also causes SCA2,1=Full (87.5% > Th1 = 50%),
which is inversed via R2,Inv to SCA2,1=Null (shown),
hence sending G1=0 to CA1,1, which activates R1,Reg;

• (d) CA1,1 runs R1,Reg and goes to Core state; from here,
it oscillates between Cross (e) and Core (d);

• (e) CA1,1 runs R1,Exp and goes to Cross state; from
here, it oscillates between Core (d) Cross (e).

CA0

Group
Diversity
Count

Final
Behaviour

1st Step of
Final Bhvr.

Corners 10 Null 11
Borders 13 Oscil. (2 states) 12
Core 16 Stuck 16

Table 3: Exp1, Summary of HCA Convergence at L0

5.4 Macro-States with Two Oscillations
Experiment Configuration. Aggregated state thresholds
were set to Th0 = 0.1 (L0) and Th1 = 0.9 (L1). Hence,
CA0,i must have more than 10% live cells to produce a
‘live’ aggregate (O0,i=1); and CA1,1 over 90% live cells (for
O1,1=1). Step multipliers were set to StpM0 = StpM1 = 1
and StpM2 = 2. This means that CA at L0 and L1 execute
at every cycle, while CA at L2 only once every two cycles.

State Transitions at L1 and L2. Fig. 9 shows CA1,1’s
state transitions. In short (as in 5.3), CA1,1 starts in Null
(for 4 steps), then goes to Full (1 step) and Core (1 step).
However, starting with step 7, it cycles through states Null
(1step), Cross (5steps), Full (1step) and Core (1step).
These transitions set the dynamics of goals at L0: for
CA0,Corners, G0 changes from 1 to 0 at step 8, then os-
cillates between 0 (8 steps) and 1 (1 step); for CA0,Border,
G0 changes from 1 to 0 at step 8, then oscillates between
0 (2 steps) and 1 (6 steps); and for CA0,Core, G0 changes
from 1 to 0 at step 9, then oscillates between 0 (1 step) and 1
(7 steps). Based on CA1,1’s ensuing aggregates (O1,1), G1

changes from 1 to 0 at step 7, then oscillates between 0 (2
steps) and 1 (6 steps). This is because only Full state trig-
gers O1 = 1 (100% > Th1 = 90%) and hence G1 = 0, but
CA2,1 only executes every 2 steps (StpM2 = 2).



a) 1st LS1 = Full State

b) 1st LS1 = Core State

c) 1st LS1 = Cross State

d) Final LS1 = Core State,
Oscillating with State in e)

e) Final LS1 = Cross State,
Oscillating with State in d)

Table 4: Exp1, HCA’s Macro-State Structures at L0

Figure 9: Exp2, State Transitions of Middle Level (L1)

CA0

Position
Divers.
Count

Final
Behaviour

1st Step of
Final Bhvr.

Corners 10 Null 11
Borders 8 Oscil-1 (8 states) 8
Core 43 Oscil-2 (12 states) 67

Table 5: Exp2, Summary of HCA Convergence at L0

a) 2 x Oscillations, LS1 = Cross State

b) 2 x Oscillations, LS1 = Core State

Table 6: Exp2, HCA’s Macro-State Structures at L0

Macro Structure at L0. The macro-state structures form-
ing at L0 are summarised in Tables 5 and 6. Interestingly, L0

converges to a behaviour where two CA0 groups – Core and
Border – oscillate through different state cycles. Namely
(Table 5): CA0,Core oscillate through 12 states, in cycles
of 93 steps; Border CA0,Border oscillate through 8 states,
in cycles of 8 steps; and CA0,Corners die off. Table 6
shows two snapshots exemplifying HCA’s final behaviour,
each time with CA0,Border and CA0,Core in different states.

5.5 Summary of Other Experiments
Table 7 summarises further selected experimental results.



Configuration Group Convergence
Th0 Th1 StpM1 StpM2 Core Border Corner
0.1 0.5 1 2 .. 4 dead dead dead
0.1 0.5 2 3 stuck oscil dead
0.1 0.5 2 4 oscil dead dead
0.1 0.5 4 4 stuck oscil-1 oscil-1
0.1 0.9 1 3 oscil-1 oscil-2 dead
0.1 0.9 1 4 .. 5 stuck dead dead
0.1 0.9 1 6 dead dead dead
0.1 0.9 2 2 .. 4 stuck oscil dead
0.1 0.9 4 4 stuck oscil-1 oscil-1
0.1 0.9 2 .. 3 6 oscil-1 oscil-2 dead
0.1 0.9 4 6 stuck oscil-1 oscil-1

Table 7: Summary of Experiments, HCA Convergence at L0

6 Conclusions and Future Work
We presented a Holonic Cellular Automata (HCA) simulator
for multi-level adaptive control systems. The aim is to offer
a generic tool for studying the impact of inter-level feed-
backs on complex system behaviour, focusing on the forma-
tion of macro-state structures at the micro-level.

The main contributions of this paper include:

• highlighting engineering principles for developing artifi-
cial complex systems via multi-level control structures: i)
micro-macro state aggregation, with information loss; ii)
macro-level processing of state aggregates (optional); iii)
macro-micro adaptation control signals; and, iv) different
execution times for feedbacks at different levels.

• proposing a multi-level control system simulator, based on
Holonic Cellular Automata (HCA) – CA hierarchy featur-
ing the principles above. HCA helps study these princi-
ples, showing the impacts of key parameters (e.g. aggre-
gates calculation or execution times) on the formation of
macro-structures and behaviours (e.g. static or cyclic).

• showing encouraging preliminary results supporting both
the viability of the engineering principles and the useful-
ness of the simulator for further studying them.

On the long term, the purpose of our research is two-fold:
i) to thoroughly understand the essential principles behind
the apparent success of multi-level/holonic structures in nat-
ural systems (Simon (1996)) ; and, ii) to translate these prin-
ciples into reusable engineering artefacts to help us design,
develop and maintain complex artificial systems, such as ar-
tificial life and (socio-)cyber-physical systems.
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