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ABSTRACT
Component technologies are increasingly being used for build-
ing enterprise systems, as they can address complex func-
tionality and flexibility problems and reduce development
and maintenance costs. Nonetheless, current component
technologies provide little support for predicting and con-
trolling the emerging performance of software systems that
are assembled from distinct components.
This paper presents a framework for automating the per-
formance management of complex, component-based sys-
tems. The adopted approach is based on the alternate us-
age of multiple component variants with equivalent func-
tional characteristics, each one optimized for a different run-
ning environment. A fully-automated framework prototype
for J2EE is presented, along with results from managing
a sample enterprise application on JBoss. A mechanism
that uses monitoring data to learn and automatically im-
prove the framework’s management behaviour is proposed.
The framework imposes no extra requirements on compo-
nent providers, or on the component technologies.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Software con-
figuration management, Software quality assurance (SQA);
D.2.8 [Software Engineering]: Metrics—Performance mea-
sures

General Terms
Management, Measurement, Performance

∗The presented work is funded by Enterprise Ireland Infor-
matics Research Initiative 2001†An important part of the presented implementation and
testing work was carried out while working in the SARDES
Project, at INRIA Rhone-Alpes, INPG UJF, France

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’05, November 7–11, 2005, Long Beach, California, USA.
Copyright 2005 ACM 1-58113-993-4/05/0011 ...$5.00.

Keywords
autonomic management, J2EE, decision policies

1. INTRODUCTION
Component technologies [11], such as J2EE1 and .NET

are increasingly being used for building complex enterprise
applications. While successfully addressing complex sys-
tem functionality issues and flexibility requirements, cur-
rent component technologies provide little support for man-
aging the emerging performance of systems assembled from
distinct components. Static component testing and tuning
procedures are typically run in isolation or simulated en-
vironments. Although important, such procedures provide
insufficient performance guarantees for components that are
to be run in diverse component assemblies, under unpre-
dictable workloads and on different platforms. The envi-
ronmental conditions in which a component runs as part of
a software application can periodically change during the
component’s lifetime. Such environmental conditions in-
clude the incoming workload and the software and hardware
resources available to a component. Changes in these run-
ning conditions can significantly impact on a component’s
availability and performance characteristics, including the
component’s throughput and response times. Often, there
is no single component implementation or deployment con-
figuration that can yield optimal performance in all possible
conditions under which a component may run. Manually
optimising and adapting complex applications to changes in
their running environment is a costly and error-prone task.
This paper presents a framework for automatically manag-
ing the performance and availabilty of complex, component-
based software systems. The presented framework is referred
to as AQuA (Automatic Quality Assurance). AQuA’s goal
is to enable applications to fluidly mould to their constantly
changing execution environments. The adopted approach is
based on the alternate usage of multiple component vari-
ants with equivalent functional characteristics, each one op-
timized for a different running environment. In short, the
management framework uses runtime monitoring data to de-
tect changes in the execution environment and application
performance; it then automatically adapts the application so
as to optimise it for the current running environment. Mon-

1Sun Microsystems - The Java 2 Platform, Enterprise Edi-
tion technology (J2EE): http://java.sun.com/j2ee



itoring data is also used to enable the framework to learn
and improve its management behaviour over time, without
requiring any human intervention. The learning process is
used to automatically build accurate specifications of the
components’ performance characteristics, in the current de-
ployment context. Based on this information, the framework
can successfully decide how to adapt the application in dif-
ferent running conditions. Decision policies used to specify
and configure the framework’s management behaviour are
clearly separated from the actual implementation of sup-
porting framework operations. This allows system managers
to state performance goals and to configure the management
process for their systems without requiring a thorough un-
derstanding of the underlying framework mechanisms and
without the need to modify the framework implementation.
A proof-of-concept framework implementation is presented
for the J2EE component technology, along with test results
from managing a sample enterprise application, the Duke’s
Bank2, on JBoss3 . The implemented prototype is referred
to as AQuA J2EE, currently targeting the automatic man-
agement of performance and availability in J2EE systems.
Further management capabilities, for quality attributes such
as reliability and dependability, will be subsequenlty added.
AQuA J2EE can be employed for managing any J2EE ap-
plication on JBoss, at the EJB level, without requiring any
design or implementation changes; clearly, the decision poli-
cies need to be configured according to the particular quality
goals of each managed application. In addition, the gen-
eral framework design allows it to be employed for manag-
ing J2EE applications at different granularity levels, or for
managing component technologies other than J2EE, with-
out requiring major, conceptual-level modifications.

2. FRAMEWORK OVERVIEW
The AQuA framework was devised as an approach to-

wards automating the performance management of complex,
component based software systems. The proposed solution
is based on the tested assumption [13], [3] that there are
frequently no unique component implementations or config-
urations that can yield optimal performance under all pos-
sible execution environments. Based on this consideration,
the presented research proposes employing multiple com-
ponent variants, providing equivalent functionalities, but
each one being optimised for a different execution environ-
ment. Such component variants are referred to as redundant
components; all redundant components that provide certain
functionality are considered to be part of the same Redun-
dancy Group (RG) with respect to that functionality [2],
[3] and [4]. The principal idea behind this approach is to
have multiple redundant components prepared at runtime
and only use the one that is optimal under the current ex-
ecution environment. At any time, for providing certain
functionality the system will select and use a single redun-
dant component from the RG providing that functionality.
The selected redundant component will be the one that is
most likely to yield optimum performance under the cur-
rent execution environment. If the execution environment
changes, the framework selects another redundant compo-
nent from the same RG, so as to optimise the application’s

2Sun Microsystems - Duke’s Bank sample J2EE application:
http://java.sun.com/j2ee/tutorial/1 3-fcs/doc/Ebank.html
3JBoss J2EE application server: www.jboss.org

performance under the new execution environment. This al-
lows the software system to dynamically adapt to variations
in its running environment and maintain its performance at
optimal levels at all times. It could be argued that an al-
ternative approach would be to specify all behaviours for all
possible conditions in a single, monolithic component, to-
gether with the logic for selecting which behaviour to use
at each time. However, using separate redundant compo-
nents for different running conditions provides radically im-
proved modularity and flexibility over the aforementioned
approach. The reason is that the separate redundant com-
ponents are clearly isolated from each other, and from the
adaptation logic that decides which one of them to use at
each point. Hence, adaptation logic and redundant com-
ponents can be independently added, modified, or removed
from the running system, as needed.
In the targeted component technologies [11] (e.g. Enter-
prise JavaBeans (EJB)), components are typically deployed
as a bundle of component implementation and configuration
files. Thus, redundant components can consequently differ
at the component implementation and/or the configuration
levels. A component’s implementation represents the busi-
ness logic the component provides. Redundant components
with differences at this level can be obtained from different
component providers. Component configurations, or deploy-
ment descriptors, are used to instruct the application server
on how to manage components at runtime. Variations at this
level are specified by component deployers. The tests pre-
sented in this paper were performed using redundant compo-
nents with variations at the component configuration level.
An example of redundant components with variations at the
implementation level was presented in [3]. The quality met-
rics currently considered for evaluating AQuA’s benefits are
performance and availability. Performance metrics include
response times and throughput, but also CPU, bandwidth
and memory usage. Metrics considered for a component’s
execution environment include workload and the software
and hardware resources available to that component.
The main management functionalities that the AQuA frame-
work provides consist of system monitoring, learning, anom-
aly detection, component evaluation, adaptation decision and
component activation. A framework prototype, AQuA J2EE,
was implemented in order to test the way the presented func-
tionalities work together for managing the performance of
J2EE applications. These functionalities are briefly intro-
duced over the following paragraphs. The learning mech-
anism is presented in more detail next. A thorough de-
scription of these functions and of the way they operate is
available from [3], [2], or [4].
AQuA’s monitoring functionality is responsible for collect-
ing runtime data from the managed components and their
execution environment. This data is used for detecting per-
formance anomalies and important variations in the com-
ponents’ execution environment. In addition, as part of the
framework’s learning function, monitoring data is stored and
analysed so as to infer higher-level information on the qual-
ity characteristics of the managed redundant components.
AQuA’s anomaly detection functionality is responsible for
identifying and signalling the occurrence of performance prob-
lems, or of relevant variations in the execution environment.
Availability concerns are also raised in case exceptions are
being caught by the monitoring module (e.g. out of mem-
ory Exception). Performance anomalies are generally sig-



nalled when performance metrics such as response times and
throughputs do not meet the system’s performance require-
ments. A number of basic anomaly detection strategies have
been implemented; new strategies can be seamlessly plugged
into the framework as they become available [2]. When per-
formance anomalies are detected, it means that the system
is already experiencing performance problems, which need
to be promptly eliminated. This situation can be avoided in
some cases by identifying and analysing the variations that
occur in the execution environment and predicting how these
variations will potentially affect the system’s performance.
In case AQuA detects that a certain component might gen-
erate performance problems under a new execution environ-
ment, it acts immediately to adapt the application; the po-
tential problem component is replaced with a more suitable
one, if available, so as to prevent performance difficulties
before they occurred. Relevant variations in the execution
environment are detected by constantly monitoring the en-
vironmental metrics of interest and periodically analysing
the monitored data. Detected environmental variations are
used as triggers to the automatic application evaluation and
adaptation process; workload and resource availability vari-
ations are considered for this purpose. The principal idea
behind this strategy is that if a system is presently meeting
its functional and performance-related requirements, it will
generally continue to do so unless a change intervenes to al-
ter this state. In the presented test case, AQuA detects and
uses changes in the incoming workload to trigger the appli-
cation adaptation. As a possible further improvement, the
environmental variations themselves can sometimes also be
predicted. In such cases, applications can be pre-emptively
adapted to deal with the predicted changes before they ac-
tually happened. For example, certain applications may ex-
perience workload variations with the time of day, week,
month or year (e.g. banking applications may expect re-
duced user loads during non-working hours; e-commerce ap-
plications would expect increased loads before certain events
or during sales). When such periods can be predicted, sys-
tem managers can instruct AQuA to automatically activate
a different redundant component during each interval.
AQuA’s component evaluation functionality is responsible
for determining the redundant components that are optimal
in a given execution environment. The component evalua-
tion process is based on the performance information that
exists on the available redundant components, at the time
the process is being executed. Initial performance informa-
tion can be provided at component deployment time, from
test results and previous experiences with the considered
components [3], [2] and [4]. As part of the framework’s
learning process, this information is dynamically validated
and constantly updated, based on accurate monitoring data
obtained from the targeted managed system. Additionally,
in case initial descriptions are not provided, the learning
mechanism is used to obtain this information from scratch.
Component evaluation results have a confidence level asso-
ciated with them, depending on the reliability of the infor-
mation used in the evaluation process. When a component
is being evaluated, performance data that was collected for
that component in a certain execution environment is used
to predict the performance of the same component when
running in similar environments. In addition, monitoring
data collected in certain running conditions is compared and
merged with existing monitoring data recorded in similar
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Figure 1: Component-level management
M - monitoring and detection, E - evaluation
and decision, A - component activation

running conditions. The more monitoring data samples are
available for inferring the performance characteristics of a
component in a certain running context, the higher the reli-
ability of that performance information and the higher the
confidence level when predicting the performance of that
component in a similar context.
AQuA’s adaptation decision functionality is responsible for
finding optimal solutions to detected or predicted perfor-
mance problems. Solutions consist of application adapta-
tions that involve the dynamic swapping of one or multiple
redundant components, as indicated by the evaluation mod-
ule. The costs of performing the actual adaptation opera-
tions over the potential benefits are considered at this level.
The current AQuA J2EE framework implementation uses
detection, evaluation and decision functionalities with local,
component-level scopes. This means that each individual
RG is being optimised separately from other RGs. Figure 1
shows an overall view of the way the presented management
framework is integrated with an EJB server. As indicated
in the figure, multiple framework instances are created - one
for each managed component. In order to reduce overheads
associated with monitoring and analysing all components,
it is possible to specify a selected subset of components to
be managed; framework instances will then only be created
to manage the selected components. Consequently, this ap-
proach can considerably reduce the framework’s footprint
and impact on system performance. All framework instances
use the same type of control cycle for managing the compo-
nents for which they were created; control cycles include
monitoring and detection (M), evaluation and decision (E)
and component activation (A) functionalities, working in a
feed-back-loop manner [2]. Global evaluation and decision
processes will be subsequently introduced to control local
management processes from a higher level, as presented in
[4]; these capabilities are important for avoiding situations
in which local optimisations lead to an overall degradation
in application performance, or cases in which a certain set
of decisions are being taken in a cyclical manner.
AQuA’s component activation functionality is used for dy-
namically swapping components, while maintaining system
consistency and the validity of existing user references [2].



2.1 The Learning Mechanism
AQuA’s learning functionality enables it to: i) avoid re-

quiring initial performance descriptions [3], [2] to be supplied
at components’ deployment time; ii) avoid completely rely-
ing on monitoring results obtained when components were
integrated in a different system (e.g. a testing platform).
As such, the learning mechanism was devised to automati-
cally acquire performance information on managed compo-
nents, in the current system. The adopted strategy was
implemented and partially tested. AQuA J2EE is to be
subsequently updated so as to avail of this capability and
thus complement, or replace certain tasks that component
providers and testers have to commonly perform at present.
This section describes the learning strategy and how it sup-
ports the evaluation process.
The proposed learning mechanism uses monitoring data to
infer performance information on the managed components.
The goal is to model and automate the process that a human
tester would normally perform in order to obtain perfor-
mance information on a certain system. Thus, the proposed
learning process collects the raw data samples provided by
the monitoring facility and merges the data of similar sam-
ples into clusters of information that have a certain reliability
factor associated with them. These clusters of information
represent the cumulated result of extensive monitoring data
and are used in the evaluation process to reliably determine
optimal system configurations.
Monitoring data samples are being repeatedly collected from
the running system, at fixed time intervals. Each moni-
toring data sample contains the date when it was created
and a certain set of monitored parameter values. Monitored
parameters include CPU, memory and network bandwidth
usage, as well as response time, throughput and incoming
workload. Such data is collected separately for each method
a RG provides, and for each redundant component avail-
able in that RG. This data is stored as part of a redundant
component’s performance history data; it is also analysed
and used to infer higher-level performance information for
that component. Thus, data samples are stored in two dif-
ferent formats: i) raw monitoring data, as collected from
the system; ii) inferred performance information clusters, as
obtained by analysing and processing the raw monitoring
data. The methodology used to infer performance informa-
tion from raw monitoring data is subsequently described.
Monitored data samples are grouped into clusters, based
on an overall similarity factor (o SimF) calculated between
them. The idea is that it only makes sense to group and
merge data samples that were obtained in similar execu-
tion environments. For this purpose, the o SimF between
two data samples is used to represent the degree to which
these two samples can be compared and merged to infer re-
liable performance information. The o SimF takes values
between 0% and 100%, where 0% indicates no similarity
at all and 100% indicates complete similarity. The o SimF
between two data samples is determined as follows. First,
for each considered parameter, the values of that parame-
ter in the two samples are being compared; a parameter
similarity factor (p SimF) is calculated for each such pa-
rameter. Thus, there will be an individual memory usage
p SimF, a workload p SimF and so on, for each monitored
parameter. The p SimF of a parameter is calculated using:
p SimF (pi1, pi2) = (|pi1 − pi2| ∗ 100)/no sim int, where pi1

and pi2 are the values of the parameter pi in the two com-

pared samples s1 and s2 respectively; pi ∈ P, where P is the
set of considered, or monitored parameters contained in each
sample and i = 1, n; n is the number of parameters consid-
ered; the no sim int is the maximum difference between two
values that have some degree of similarity; if the difference
between two values is greater than the no sim int, then the
p SimF of the two values is 0%. The current function se-
lected to calculate the p SimF is a triangular one [Figure
2]; other functions can be used instead, as appropriate (e.g.
trapezoid, or bell curves). As a next step, the o SimF of the
two samples is calculated based on the individual p SimF
values set. The minimum function was selected for this pur-
pose: o SimF (s1, s2) = min(p SimF (pi)), where: s1 and
s2 are the two compared data samples: s1 is a new data
sample and s2 is the inferred performance information in an
existing cluster. Using the minimum function to calculate
the overall sample similarity means that if one parameter in
the data samples has a 0% p SimF, then the o SimF of the
samples will also be 0%; in this case the two data samples
will not be merged as part of the same cluster. If necessary,
other functions can be used to calculate the o SimF from
the individual p SimFs.
Each cluster contains one inferred performance element, which
is obtained by merging all similar data samples collected up
to that point. This performance element has the same for-
mat as a raw monitoring data sample. Nonetheless, the
inferred information has a higher reliability factor than a
single monitored data sample would. The more data sam-
ples are used to infer a performance element, the higher the
reliability factor associated with that element. A set of per-
formance information clusters is built for each method of
each redundant component, as follows.
Whenever a new monitored data sample is received for a
certain RG method, it is used to update the existing set
of inferred clusters of that method, for the currently active
redundant component. First, the o SimF is calculated for
the new data sample with respect to all the existing clus-
ters. Second, the new data sample is used to update the in-
ferred information in those clusters for which the calculated
o SimF is greater than 0%. If the new data sample cannot
be used to update any of the existing clusters, because all
calculated o SimFs are 0%, then a new cluster is created for
the new data sample. In addition, if all the o SimFs that
are greater than 0% are also smaller than a certain threshold
(e.g. 50%), then the identified similar clusters are updated
as before and a new cluster is also created for the new data
cluster; this situation is exemplified in Figure 2. The manner
in which new data samples are used to update the existing
information of similar clusters is described next.
The value of each parameter in a new data sample is used to
update the value of the corresponding parameter in the ex-
isting inferred sample of the updated cluster. The following
formula is used for this purpose: updated parameter value =
(old value + w ∗ new value)/(1 + w), where w is a weight
factor, taking values between 0 and 1: w = o SimF/100.
This formula dictates that a new data sample influences the
existing inferred data in a cluster in a manner that is di-
rectly dependent on the o SimF between the new data and
the cluster. As such, new data will hardly influence existent
data that was monitored in dissimilar environmental condi-
tions. If the new data sample has a small p SimF for even
one parameter when compared with a cluster, then this sam-
ple will only have a small influence in updating the values
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Figure 2: The learning process: updating current
performance information with new monitorng data

of that cluster, even if the rest of its parameter values are
extremely similar. However, new monitored data will have
a significant influence on existing data that was monitored
in similar or identical environmental conditions.
The rest of this section describes how the evaluation process

uses the inferred performance information in the available
clusters. When the evaluation process is triggered, a mon-
itoring data sample is first collected from the current exe-
cution environment. This sample is compared with all the
existing clusters, of all the available redundant components;
the o SimFs are calculated as previously discussed. Clusters
with o SimFs lower than a certain predefined threshold (e.g.
20%) are considered irrelevant and are being discarded. If
no relevant clusters are found, for any of the available redun-
dant components, it means that no performance information
exists in the RG for the current execution conditions; an
adaptation is only triggered in this case if considered that
increased risks can be taken. In cases in which more than
one relevant cluster is found for the same redundant com-
ponent, probabilities are calculated for each cluster, based
on their associated reliability values and calculated o SimFs.
Higher probabilities are associated with clusters that have
high reliability factors. For example, the evaluation process
will predict that, for a certain redundant component, per-
formance characteristics similar to the ones recorded when
’spikes’ were monitored in a previous execution context will
have a small probability of reoccurring in a similar context.
On the contrary, there will be a high probability for the per-
formance characteristics monitored in ’normal’ conditions to
reoccur. The current implementation selects a single cluster
to represent each redundant component. From these repre-
sentative clusters, the ones with information that indicates
possible availability problems (e.g. thrown exceptions) are
being discarded. As a next step, the performance parame-
ter values of the remaining clusters are being compared (i.e.
response times, throughput and resource usage). An ’opti-
mum’ cluster is then selected; the selection is based on com-
paring the parameter values in the considered clusters, and
then using whether an overall evaluation of all parameters,
or taking into account specified priorities among parameters.
The redundant component associated with the selected ’op-
timum’ cluster is considered to be the currently ’optimal’
component by the evaluation process.

3. FRAMEWORK PROTOTYPE FOR J2EE
J2EE is the component technology standard specified by

Sun Microsystems for building multi-tiered enterprise appli-
cations. J2EE specifies different component types for im-
plementing the various enterprise application tiers, such as
servlets for the web tier and Enterprise JavaBeans (EJBs)
for the application tier. EJBs are server-side software com-
ponents that encapsulate application business logic. At run-
time, EJBs are managed by EJB containers, which repre-
sent runtime environments within the J2EE server [Figure
1]. EJB containers provide system-level services, such as
transactions, security, or lifecycle management to deployed
EJBs. This provides a clear separation between the business
logic and the middleware services of distributed enterprise
systems built using this technology. Xml configuration files
are used to specify the manner in which the server container
must manage individual EJBs at runtime. EJB configura-
tion files are bundled together with the EJB business logic
into deployable component packages, or archives. An impor-
tant propriety of EJB applications is that all client calls to
EJB instance methods must go through the EJB container
[Figure 1]; clients can never access EJB instances directly.
This provides the opportunity for intercepting, analysing
and processing all accesses to EJB instances.
This section discusses AQuA J2EE, the current framework
prototype implementation for J2EE systems. Certain func-
tionalities, such as the performance anomaly detection, com-
ponent evaluation and adaptation decision, can be imple-
mented independently of the targeted J2EE platform, or
component technology used. Conversely, other framework
functionalities, such as the monitoring and the component
activation, need to interact with the managed component-
based system, in order to obtain monitoring data and per-
form swapping operations, respectively. These are system-
dependent functionalities that need to be customised for
each targeted platform. As presented in [2], several ap-
proaches exist for implementing such system-dependent func-
tionalities. For the current framework prototype, the adopted
approach was to modify the application server on which
the targeted managed applications were deployed and run;
JBoss was selected as the J2EE application server used. This
section describes the way each framework functionality was
implemented for the current AQuA J2EE prototype.
The monitoring functionality was implemented by instru-
menting one of JBoss’s container interceptors. The intercep-
tor was enabled to extract monitoring data from all incoming
and outgoing EJB method calls. Monitoring data includes
method request and response time stamps, the identity of
the caller and called EJBs and the name of the initiating
and targeted methods. This data is used to calculate EJB
method response times, workloads and throughputs and to
determine method call paths through the J2EE application.
Call path information can be used to dynamically create
accurate models of the running application [2]; no require-
ments are placed on application assemblers to provide such
models. Monitored data samples are sent to the anomaly de-
tection functionality and to the learning module for further
processing. Future work will enable the monitoring module
to intercept exceptions thrown during system execution.
The anomaly detection, evaluation and decision function-
alities were implemented using a decision policy-based ap-
proach. Decision policies were implemented using the ABLE



Rule Language (ARL)4. Rules are specified in dedicated arl
files, separated from the rest of the framework implementa-
tion. As such, rules can be added, deleted and modified by
system managers without the need to understand, modify,
or re-compile any of the underlying framework mechanisms.
Different inference engines can be specified for executing dif-
ferent rule sets (e.g. forward or backward chaining, script,
or fuzzy engines). Several types of rules, or decision policies,
have been devised, so as to implement the anomaly detec-
tion, evaluation and decision functionalities. The main roles
of these policies are discussed next.
Detection policies analyse the incoming monitoring data and
determine the circumstances in which system optimisations
are necessary, or possible. Detected cases are signalled to
the evaluation module. For the presented testing scenarios,
detection policies were used to spot cases in which monitored
parameter values (i.e. load, response time and throughput)
crossed certain, predefined thresholds. Additional policies
were also implemented in order to avoid false or cascaded
alarms. As such, occurrences of small variations across the
specified thresholds are being ignored and not signalled to
the evaluation functionality.
Evaluation policies are used to determine the optimal re-
dundant components in the current execution environment.
Currently, these policies specify which redundant compo-
nents are optimal in which execution conditions; this infor-
mation was obtained from extensive tests run on the tar-
geted application and execution platform. The learning
mechanism will subsequently be used to obtain and update
this information instead. For each evaluation rule, the cur-
rent environment parameters (e.g. workload) are compared
against the parameters specified in the rule’s conditions. In
case of a match, the rule is triggered, its action indicating
the optimal redundant component.
Adaptation decision policies are used to determine whether
the system should actually be adapted; if yes, the system
is reconfigured by activating the optimal redundant compo-
nent suggested by the evaluation policies. In the current
implementation, the redundant component indicated as op-
timal is selected for activation. Additional policies are then
used to prevent reactions to false alarms. Conforming to
these policies, the application will not be adapted if another
adaptation operation was executed within a certain preced-
ing interval. This avoids cascading adaptation decisions to
be triggered based on monitoring data obtained during re-
cent system adaptations. Additional policies will be subse-
quently specified to also consider the cost of the required
adaptation operations and the outcomes of previous, simi-
lar adaptation decisions. Such policies were not used in the
tested scenarios, since the monitored adaptation operations
proved to have a limited, sustainable impact on system per-
formance. Decision policies will also be designed to deal
with eventual, conflicting optimisation demands.
The current implementation of the component activation tier
is based on the hot-deployment facility provided by JBoss.
The main difficulty with this facility is that in most cases it
cannot be successfully used to hot-swap EJBs while under
heavy workloads. There are two main reasons behind this
problem. First, when JBoss performs a hot-deployment op-
eration, it first undeploys the old EJB and then deploys the
new EJB variant. This creates an availability gap between

4ABLE Rule Language (ARL): www.research.ibm.com/able

the two deployment operations, during which neither the old
nor the new EJB variants are available. This problem was
solved by intercepting and delaying all incoming requests
for the duration of the hot-deployment operation. A sec-
ond problem occurs when Stateful Session EJBs are used as
part of an EJB application. This is because Stateful Session
bean instances maintain their state between successive client
calls, for the entire duration of a user session. As such, all
client calls belonging to a certain session must be handled
by the same Stateful Session bean instance. Thus, prob-
lems will occur if a Stateful Session bean is hot-swapped
in the middle of a user session; the reason is that subse-
quent client calls belonging to that session will no longer
be able to find the particular Stateful Session instance that
used to handle this session. Furthermore, the same problem
occurs for bean instances that are used by Stateful Session
beans, since they are also being maintained as part of the
session state. This problem was solved as follows. Before
the hot-deployment operation is started, the container of
the EJB to be replaced is instructed to block all requests
for the creation of new EJB instances; all other requests are
let through. This allows started user sessions to terminate,
while not allowing any new session to be initiated. When
no more instances of the targeted EJB are available in the
container, the hot-deployment operation is executed; after
the swapping process terminates, all incoming requests are
unblocked. As a further improvement, the EJB instance
cache of the targeted EJB is flushed as soon as no activity
is detected on the stored instances for a certain period.
In the performed tests, several redundant components con-
taining Entity beans were dynamically swapped to accom-
modate variations in the incoming workload. As all En-
tity beans in the tested application happened to be called
by Stateful Session beans, any swapping operation needed
to wait for at least the length of a client session before it
could be executed. Thus, the presented test-case represents
one of the worst-case scenarios in terms of induced delays
and throughput decline during the adaptation operations.
Even so, the measured performance overheads were limited.
No availability concerns were raised as no exceptions were
thrown and none of the client transactions expired.

4. TESTING SCENARIOS AND RESULTS

4.1 Test application
An enterprise banking application, the Duke’s Bank, was

used to demonstrate AQuA J2EE’s performance manage-
ment capabilities. Duke’s Bank is a sample J2EE applica-
tion that allows customers to perform banking operations
online. Such operations include accessing account histories
and performing banking transactions. Duke’s Bank is de-
signed as a typical three-tiered enterprise application, with
a web, application and a database tiers, respectively. There
are three main business entities in the Duke’s Bank applica-
tion: customer, account and banking transaction. Each of
these business entities is implemented by a separate Entity
bean in the application tier and by a corresponding table
in the relational DB. The application is designed so that all
Entity beans are accessed via Stateful Session beans. Con-
forming to the EJB specification, instances of Stateful Ses-
sion EJBs maintain their state for the entire duration of a
client session accessing them. Thus, in the Duke’s Bank, the
Entity bean instances must also be maintained available for



the entire duration of the client sessions using them. This
implementation detail had an important role in the outcome
of the presented test cases and adaptation scenarios.
Several redundant components were built and used for en-
abling the Duke’s Bank to adapt to changes in its running
environment. The redundant components differed in their
deployment configurations, which instructed JBoss contain-
ers on how to manage instances of these components at run-
time. More precisely, the max-bean-age parameter was tuned
for each instance cache of each redundant EJB, so as to be
optimal in certain system load conditions. The max-bean-
age parameter dictates the amount of time an inactive EJB
instance is kept in a cache before being passivated (i.e. the
instance’s state is persisted and the instance is removed from
the cache). The idea behind this strategy is to avoid consum-
ing caching resources for EJB instances that are no longer
being used. However, in a highly loaded system, an EJB
instance can remain inactive for long periods, even while
actually handling client requests. This can happen as the
instance may be blocked waiting for responses from other
EJB instances, or for needed resources to become available.
In such cases, if the EJB instance remains inactive for longer
than its maximum-bean-age, JBoss will rightly attempt to
passivate it. However, as the EJB instance is being locked
in a client transaction or session, the passivation operation
will fail. Additional resources are consumed while JBoss at-
tempts to perform illegal operations, further increasing de-
lays and worsening resource contention. Performance con-
sequently deteriorates until transactions start to expire and
roll back; exceptions are thrown causing system availability
to degrade. To avoid the occurrence of such situations, ap-
plication deployers commonly configure EJB instance caches
with extended maximum bean ages, which will most cer-
tainly suffice in eventual heavy load scenarios. As an exam-
ple, the standard JBoss configuration for the max-bean-age
parameter is 600 seconds. Nonetheless, when the system is
lightly loaded, extended max-bean-age configurations mean
that EJB instances are kept in the cache for long periods,
even when sometimes no longer reused or needed by the ap-
plication. Memory resources are being inefficiently used in
effect. Ideally, the managing application server (e.g. JBoss)
would ’know’ how to differentiate between the two scenarios
and be capable of deciding to passivate EJB instances only
when ’really’ inactive and no longer needed. For achiev-
ing this, the application should be dynamically reconfig-
ured when its execution environment changed. AQuA J2EE
provides the means to automatically execute such adaptive
management operations, at runtime. The policy-based de-
tection, evaluation and decision functionalities allow system
managers to specify, in a platform-independent manner, the
difference between the various execution scenarios and the
possible corrective actions to be taken in each situation.

4.2 Testing platform
Three stations were used for installing the J2EE system

and performing the tests. One station was used for running
the J2EE application on JBoss, a second one for running a
relational DB and a third one for simulating client activity
on the system. JBoss 3.2.5 was used as the J2EE application
server, running on a Microsoft Windows Server 2003 Enter-
prise Edition platform, with Intel Pentium III at 860MHz
and 512 MB of RAM. The MySQL relational DB was se-
lected as persistence support for the Duke’s Bank applica-

tion. It was run on Microsoft Windows Server 2003 Enter-
prise Edition, on an Intel Pentium III processor at 866MHz
and 128 MB of RAM. The OpenSTA5 load-generating tool
was used to simulate clients for the tested application. Open-
STA was installed on a Windows Server 2003 Enterprise Edi-
tion station, Intel Pentium III at 701 MHz and 1 GB of
RAM. The three stations were connected via an Ethernet
LAN at 100Mbps. The GCViewer6 tool was used to mea-
sure memory consumption for the Java process which ran
the J2EE application and JBoss server.

4.3 Testing scenarios and procedures
Two redundant components were devised for the Entity

EJBs employed in the tested usage scenarios. Each redun-
dant component was prepared so as to be optimal under a
different system load. The redundant components were built
to differ at the instance caching configuration level. Namely,
the caches were configured with 10 second and 500 second
maximum-bean-ages. These redundant components are re-
ferred to as the 10 bean age component and the 500 bean age
component, respectively. Duke’s Bank was tested under two
different workload conditions, starting with a low workload
(i.e. 15 users) then increasing the workload for a certain
period (i.e. 60 users) and then decreasing it back to the
initial lower workload. For this purpose, the OpenSTA load
generator was used to simulate different numbers of concur-
rent users accessing the application. The usage scenario run
by each user involved several operations: the user logs in,
lists all the banking transactions of a selected account and
logs out, terminating the client session. Each user was con-
figured with a unique identity, meaning that once a user’s
session was completed, the EJB instances of that user were
no longer needed; at that point, these instances should be
promptly removed from the cache, to free system memory.
Two different scenarios have been tested: one in which the
application adaptation was not employed (i.e. AQuA J2EE
was not integrated with JBoss) and another in which appli-
cation adaptation was used to optimise the application to
changes in its running environment.

4.4 Test results
In the testing scenario that used AQuA J2EE, the appli-

cation was initially configured to run the 10 bean age vari-
ant, as optimal for the initial low workload. When the work-
load increased, the management framework automatically
detected the load variation, determined that the 500 bean age
variant was the optimal one in the current environment and
decided to activate it; the initial 10 bean age variant was
consequently swapped with the new 500 bean age variant.
During the interval immediately following this adaptation
operation, the special-purpose policies in the decision mod-
ule prevented further adaptations to be performed, so as to
avoid oscillating adaptations. Such situation would have oc-
curred in this case due to the decreased workload detected
on the adapted components, during the actual swapping
process. The workload decrease was caused in this case by
the component activation process, which blocked requests on
RGs while swapping their redundant components. Nonethe-
less, the detection module is unaware of this aspect when in-
terpreting monitored data. It consequently alerts the eval-
uation function, which determines the optimal redundant

5Open System Testing Architecture: www.opensta.org
6Tagtraum, GCViewer: www.tagtraum.com/gcviewer.html
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Figure 3: Adaptation impact on memory usage

component in the apparent low workload context. Activat-
ing this recommended component at this point would be un-
desirable management behaviour; the adaptation would ac-
tually be based on monitoring data collected during another
adaptation process which is optimising the application for
the real, increased workloads. The current implementation
of the adaptation decision policies prevents this incorrect
behaviour by not allowing adaptation operations to be per-
formed within a certain interval after a system adaptation
was completed. Continuing the tested scenario, when the
workload later decreased back to a low level, the application
was automatically adapted again, in a similar manner, so as
to use the 10 bean age variant. In the scenario in which the
application was not adapted, the 500 bean age variant was
used throughout the test, workload fluctuations ignored.
Figure 3 shows the memory usage levels recorded during
the two separate test scenarios. Results clearly indicate the
benefits of the application adaptation on system memory
usage. Under low system loads, the non-adapted application
consumed more than 100% more memory (i.e. 100MB more
memory) than the adapted application. The measured mem-
ory consumption represents the memory usage of the entire
web and application tiers of the enterprise system. This
includes both the Duke’s Bank application and the JBoss
server. Thus, the memory usage gains are reported with
respect to the memory consumption of the entire enterprise
system (database excluded). As previously explained, the
reported gains were obtained based on the way the differ-
ent caching configurations work on JBoss. As such, when
using the 10 bean age component and testing the applica-
tion under a low load, the maximum number of instances
reached in each EJB cache was close to the number actually
needed for handling client demands. However, when using
the 500 bean age component under the same load, the max-
imum number of instances in each cache was significantly
increased, as EJB instances were being maintained in the
cache for long periods, even after no longer used. In a bank-
ing application, each customer has their own banking ac-
count, which they normally manage once a day, at most.
Thus, instances cached for a certain customer are never ac-
tually used again before passivation. As a result, under low
system loads, the memory consumption caused by keeping
the caches at increased levels, as in case of the 500 bean age
variant, do not bring any visible performance benefits.

In order for the system to be able to run under the two

tested environments, sufficient system resources needed to
be available to accommodate both low and increased work-
loads. For this reason, the memory gains obtained by adapt-
ing the application to low incoming workloads would not
directly improve the application’s performance characteris-
tics (i.e. response time and throughput). However, a re-
alistic scenario in which such gains would be beneficial is
that of a cluster of servers on which multiple applications
are being run; applications are dynamically being ported
between the available servers in the cluster, so as to cope
with fluctuations in the incoming workloads, optimise clus-
ter resource usage, or mask server crashes (e.g. [12]). In this
scenario, saving memory on one of the cluster servers would
allow for a memory-consuming application to be ported on
that server. This scenario was simulated in the executed
tests by starting a memory-consuming application whenever
sufficient memory became available. This application con-
sumed about 150MB of memory. In this scenario, the mem-
ory saving benefits could be observed at the performance
level of the Duke’s Bank. Namely, when Duke’s Bank was
adapted to use the 10-bean-age variant under low user loads,
running the memory-consuming application in parallel did
not impact on the Duke’s Bank performance, as sufficient
memory was available. However, attempting to start the
memory-consuming application when the 500 bean age vari-
ant was used resulted in out of memory exceptions being
raised, causing the JBoss server to crash and thus dramati-
cally affecting system availability. This shows how adapting
Duke’s Bank can optimise memory usage in a clustered sys-
tem with limited available memory. When the tested system
was upgraded so as to avail of sufficient memory for the cor-
rect functioning of both the non-optimised Duke’s Bank (i.e.
using the 500 bean age variant) as well as of the memory-
consumption application, availability issues were solved, but
response times of the Duke’s Bank were impacted. Figure
4-a shows the response times measured in this final scenario
for the two redundant components running under low loads.
Results indicate that when the 500 bean age variant is run,
certain users experience response times of up to 20% (i.e. 4
[s]) bigger than when the 10 bean age variant was used.
Response times measured during the entire duration of the
two testing scenarios are shown in Figure 4-b. The origi-
nal JBoss distribution was used when the application adap-
tation was not used. Thus, the presented results indicate
that during normal system execution AQuA J2EE induces
no visible overheads on application performance. Perfor-
mance overheads occur only during the actual application
adaptation process. This is reflected in the two spikes that
appear in the response time values, at the points where the
two swapping operations occurred. As previously discussed,
the response time overheads caused by the component swap-
ping process are critically dependent on the actual swapping
implementation used and on the particular characteristics of
the managed application. These overheads must be consid-
ered when evaluating an adaptation operation, to ensure the
potential benefits would outweigh the induced overheads.
The impact the presented solution has on other system qual-
ity attributes, such as reliability, will also be considered.

The Duke’s Bank example offers a valid case in which
no single optimal configuration exists for all possible sys-
tem execution environments. The 10 bean age component
is optimal under low workloads, but cannot be used under
heavy loads. The 500 bean age variant is needed for in-
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a) 

b) 

Figure 4: Application adaptation impact on
response times - limited memory availability:
a) low workloads b) low and increased workloads

creased workloads, but is sub-optimal under low workloads.

4.5 Discussion
A few notes are in order for showing the way monitored

parameter values should be interpreted in the tested sce-
narios. In the exemplified application, the parameter that
ultimately dictates which redundant component is optimal
at anyone time is the component response time. It was pre-
viously shown that the inactivity of a cached EJB instance
can be interpreted differently, depending on the system load:
under low loads, it means the instance is no longer needed
and can be discarded; under high loads, it can also mean
that the instance is blocked waiting for needed resources to
become available. The response times of the various com-
ponents involved provide a clear indication of the amount
of time EJB instances may remain idle in a cache, wait-
ing for the arrival of responses they need to complete their
tasks. Namely, higher response times indicate a loaded sys-
tem, requiring the 500 bean age variant to be used. Simi-
larly, decreased response times will indicate a lightly loaded
system, allowing for the optimised 10 bean age variant to
be activated. Hence, analysing current response time values
for deciding which redundant component to use is a viable
option. Alternatively, it is also possible to analyse those sys-
tem parameters that directly impact response time values,
such as the incoming workloads and the resource availabil-
ity. For example, if the amount of physical system resources
remains constant, and resources are sufficient so as not to
become saturated at any point, then the incoming workload

can successfully be used to evaluate and predict overall sys-
tem loads and response time fluctuations. This option was
selected for specifying the detection and evaluation policies
in the presented tests. Nonetheless, if resource contention
occurred, individual component workloads would cease to
increase with the actual incoming client load on the system.
This is because client requests would be queued (at lower
middleware, JVM or OS levels) waiting for resources to be
freed; thus they would not influence the monitored compo-
nent workloads. In such cases, the combined variations of
workloads and system resource usage need to be considered.
This example shows the paramount importance of clearly
understanding the way a system’s state is reflected, at dif-
ferent levels, in its various parameter values. Being able to
correctly interpret the available monitoring data and pro-
vide viable system diagnosis is crucial for specifying and ob-
taining the desired system adaptation behaviour. Further
monitored parameters can be added as necessary to provide
a more accurate view of the system state.

5. RELATED WORK
To the best of our knowledge, there are no similar frame-

works that employ monitoring, learning and adaptation for
applications based on contextual composition frameworks
[11], at the component level. General frameworks for self-
adaptive systems are presented in [8] and [5], featuring inter-
related monitoring, analysis and adaptation tiers.
AQuA J2EE aligns with these solutions, while specifically
targeting the performance of enterprise applications based
on contextual composition middleware [11].
Component redundancy-based adaptation techniques, such
as presented in [13] are similar to the application adapta-
tion approach in AQuA. The main features differentiating
AQuA’s adaptation solution from these approaches are the
lack of requirements on component providers to supply ac-
curate initial performance information for each redundant
component, or replacement mechanisms for each separate
pair of redundant variants. The decision algorithm pre-
sented in [13] can be used to specify AQuA’s decision poli-
cies, for systems in which the adaptation operations take
considerable periods to complete.
Efforts towards standardizing and implementing hot - de-
ployment functionalities in J2EE applications are being made
in research initiatives such as [10] and [7]. The authors in-
tend to comply with specified standards and possibly adopt
available hot-deployment implementations for AQuA J2EE.
Several projects, such as JAGR [1] and JADE [9], propose
automatic frameworks for managing the availability and de-
pendability of component-based enterprise applications, with
focus on J2EE systems. JAGR [1] uses component level
micro-reboots as a repair mechanism for transient faults.
A hot-deployment based solution was adopted for micro-
rebooting faulty EJB components on JBoss.
AQuA J2EE can be used for the same purpose, by speci-
fying management policies that detect and dynamically re-
place a faulty redundant component with the same redun-
dant component; this is equivalent with re-deploying or re-
booting that component. JADE [9] focuses on automat-
ing the deployment and re-configuration of J2EE systems.
Managed entities can be entire servers (e.g. Tomcat), server
provided services (e.g. security, transactions), or individual
application components (e.g. EJBs). AQuA is complemen-
tary with this work. For example, the platform-independent



part of AQuA J2EE can be integrated with the proprietary
monitoring and re-deployment mechanisms implemented in
JADE. This would extend the quality attributes that can
be automatically managed in J2EE systems and leverage
the presented policy-based problem-detection and adapta-
tion decision mechanisms.

6. CONCLUSIONS AND FUTURE WORK
Performance management of complex, enterprise software

systems is becoming an increasingly difficult process. Com-
pleting this process manually is consequently becoming more
costly and error-prone [6]. This paper presented AQuA, a
framework for automating the management of component-
based enterprise systems. AQuA provides the means for au-
tomating administrative tasks which system managers should
commonly perform at present. Administrators can use their
knowledge to configure the AQuA framework on how to au-
tomatically manage applications. No extra requirements are
placed on component providers or the component technolo-
gies used. A prototype framework, AQuA J2EE, was imple-
mented and tested for managing a sample J2EE application
on JBoss. Presented results showed the benefits of auto-
matic application management on system performance and
availability. An automated learning mechanism for acquir-
ing component performance information was devised. Fu-
ture work will focus on integrating this mechanism with
the current AQuA J2EE implementation and testing its ef-
ficiency on several sample systems. A number of additional
applications with diverse adaptation requirements will be
tested, in order to validate and extend AQuA J2EE’s man-
agement capabilities as necessary.
In summary, the main contributions of the presented re-
search consist of: i) indicated the existence of a performance
optimisation problem, namely, the difficulty of devising and
managing a single component implementation or configura-
tion that is optimal under all possible running conditions; ii)
implemented and tested example applications in which the
presented problem occurred, using the targeted component
technologies; iii) proposed a component redundancy-based
solution for addressing this problem; iv) devised AQuA,
a management framework for implementing the proposed
solution and automatically managing applications’ quality;
AQuA’s general design presents several distinctive charac-
teristics, such as the learning facility and the combined de-
centralised and centralised decision processes, which differ-
entiate it from similar work in the area; v) implemented
AQuA J2EE, a framework prototype for managing J2EE ap-
plications, on JBoss; this involved finding and implementing
solutions for monitoring and swapping EJB components on
JBoss; vi) showed the benefits of using AQuA J2EE for au-
tomatically managing an example J2EE application.
When automating the management process and allowing
applications to re-configure themselves, it is paramount to
ensure that system dependability and performance are not
actually put at risk, at any point. Ideally, the framework
will perform similar operations to those an expert human
manager normally would, except it will do so at lower costs
and in a less error prone manner. Thus, the goal is to cap-
ture the existing expertise of human system managers and
implement it as an automated process that accurately sim-
ulates current management best-practices. AQuA aims at
achieving this goal, for complex component-based systems.
It currently offers the means to specify system management

knowledge in terms of decision policies. The learning mech-
anism provided will initially support the framework and the
system administrators in taking informed management de-
cisions when reconfiguring application components. Subse-
quent releases will also be capable of inferring and adjusting
the actual decision policies, at runtime.
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