
CEYLON : A service-oriented framework for building autonomic managers

Yoann Maurel, Ada Diaconescu and Philippe Lalanda

Laboratoire Informatique de Grenoble

F-38041, Grenoble cedex 9, France

(Yoann.Maurel, Ada.Diaconescu, Philippe.Lalanda)@imag.fr

Abstract—The important, ambitious goals of autonomic
management applications require complex, adaptable reason-
ing capabilities that prove extremely difficult to conceive and
implement. An increasing number of Autonomic Computing
projects have provided partial solutions and studies that
brought significant contributions to the understanding of this
domain. At the same time, little support is currently available
for facilitating the creation of complete autonomic management
applications. This paper proposes a solution for the opportunis-
tic integration of specialised autonomic management resources,
conceived and implemented as services, so as to obtain complex,
adaptable management strategies. The paper introduces an
architecture that follows the proposed solution and provides
a framework that implements this architecture. The solution’s
validity is indicated by experimental results obtained by testing
the framework prototype on a home security application.

Keywords-autonomic management; dynamic composition;

problem solving modules; framework; service-oriented com-
puting

I. INTRODUCTION

The purpose of Autonomic Computing is to enable the self

management of software systems and to minimize human

intervention [8] [7]. In recent years, autonomic management

solutions have become critical for business success in many

domains [2] [3]. Not surprisingly, their complexity has

notably increased in order to allow for the administration

of more important and complex software systems. The

significant complexity of autonomic management functions

is directly linked to the ambitious goals they must attain.

The monitoring, reasoning, decision and execution capa-

bilities necessary for implementing autonomic management

strategies involve multiple complicated tasks, at various ab-

straction levels. These include collecting important amounts

of heterogeneous data, interpreting uncertain, incomplete, or

contradictory information, diagnosing complicated problems

and providing viable solutions while avoiding conflicting

management plans. Additionally, autonomic management

strategies must maintain a good balance among multiple, po-

tentially conflicting business goals, including performance,

reliability and security. Finally, autonomic managers must

constantly adapt their administrative strategies, in order

to react to changes in managed resources, accumulated

knowledge, running environments and business objectives.

Meeting such goals requires complicated reasoning capabil-

ities, which are hard to design and implement.

An increasing number of Autonomic Computing projects

have provided partial solutions and studies that brought

significant contributions to the understanding of this domain.

In general, available solutions focus whether on addressing

specific management concerns (e.g. runtime monitoring, pat-

tern recognition, optimal configurations, learning techniques,

or dynamic resource modifications), or for administering

a certain application, running on a given platform, with

respect to a certain business goal [13] [6]. Nonetheless,

little reusable support is currently available for integrating

existing solutions and facilitating the development of com-

plete autonomic management applications. Most systems are

developed by engineers with a high expertise in the man-

aged resources domain but not in the software engineering

field. As a result, most developed autonomic solutions are

hardly replicable and based on technical solutions that are

difficult to test, reuse, and scale up. We believe that, in

order to meet the usual standards of software quality for

autonomic managers, we have to use well proven software

engineering techniques. In particular, abstraction, modularity

and separation of concern should be heavily used to build

robust autonomic management solutions. In particular, a

clear distinction should be made between expert code and

reusable, non-functional, domain-independent code.

Another important issue, of course, comes from the chal-

lenging requirements to be met in order to build a generic

enough framework for autonomic management. Defining

reusable frameworks for guiding the design and imple-

mentation of Autonomic Computing solutions raises new

challenging issues, not least because we are dealing with

dynamic, non-deterministic reasoning processes. In particu-

lar, an autonomic solution must be able to adapt to various

configurations. Different reasoning strategies have to be used

depending on the autonomic management process state. For

instance, when an autonomic configuration fails to solve

a given problem, it is necessary to try out new options.

Similarly, when a very specific problem occurs, it is often

necessary to add specific management resources. We have

worked on such an issue in a recent project1 dealing with

electrical distribution. A remote installation suffered from an

electrical default every day at noon. The collected data were

not sufficient for a (human or electronic) expert to detect the

1Autonomic Networks for SOHO users: http://anso.vtt.fi



problem. Hence, it became necessary to inject different data

collectors and analyzers in order to cope with the problem.

Additionally, an autonomic solution is based on oppor-

tunistic reasoning. This indicates that the way a problem

is detected, analyzed and solved is determined during run-

time, depending on the current conditions and requirements.

When autonomic managers must react to complicated and

unpredictable scenarios, the space of detectable conditions

and desirable decisions grows exponentially. In these cases,

it becomes difficult, or impossible, to statically predict all

possible situations and provide all necessary solutions in an

autonomic manager. The approach where developers fully

specify and control the overall application behavior is hard

to apply.

In this paper, we advocate the adoption of a service-

oriented approach for developing autonomic management

applications. We propose to build complex administrative

strategies from simple, specialized autonomic tasks con-

ceived and implemented as service-oriented components. In

this view, specialized tasks are dynamically identified and

assembled for detecting and solving complicated, possibly

unexpected problems. During runtime, the available auto-

nomic tasks form opportunistic collaborations depending on

the current situation, requirements and available information.

A precise, exhaustive specification of monitoring, analysis,

planning and execution directives is no longer required.

Service orientation brings the necessary flexibility, al-

lowing reconfiguration and dynamic integration of manage-

ment tasks. Service-Oriented Computing (SOC) promotes

loosely-coupled architectures [12] [14]. It aims to reduce

dependencies among composition units, letting each element

evolve separately, so the application is more flexible than

monolithic applications. It also promotes substitutability: a

service can be transparently replaced by another service, as

long as both services implement the interface defined in the

provider-consumer contract. Implementation and platform

heterogeneity are hidden from service consumers. Several

implementations meeting the SOC principles have been

proposed. Web Services 2 are the most prominent one. How-

ever, several other implementations currently exist, including

UPnP 3, OSGi 4 and iPOJO 5 [4]. A salient aspect of SOC is

the way in which service compositions are achieved. Service

composition is essentially a matter of control, which can be

extrinsic or intrinsic to services. In the first case, services are

called in accordance with a process - an oriented graph of

services. In the second case, service-oriented components[1]

manage their own interconnections and interactions. This

latter approach has been recently gaining an important

momentum and is being used in various domains such as

pervasive computing and enterprise systems.

2Web Services : www.w3c.org
3Universal Plug and Play : www.upnp.org
4Open Services Gateway initiative: www.osgi.org
5iPOJO: www.ipojo.org

Figure 1. Proposed two-layer architecture

This paper proposes an architecture that follows the pre-

sented approach and provides a reusable framework, named

Ceylon, that implements this architecture. The solution’s

validity is indicated by experimental results obtained by

testing the framework prototype on a sample pervasive

application.

II. PROPOSAL

A. Overall presentation

Our approach is to implement an autonomic manager

as an opportunistic composition of loosely-coupled service-

oriented management components. Each management com-

ponent implements a simple administrative task, such as

monitoring a parameter, detecting a problem type, planning a

specific solution or modifying a managed resource. Commu-

nication between management components is asynchronous

and topic-based. A management component’s execution is

triggered by events from a predefined set of topics. In turn,

a component’s execution may generate a number of topic-

based events.

In this manner, complex management strategies are de-

veloped through the integration of simpler administrative

tasks. Composition is opportunistic in the sense that it is

performed at run-time, depending on run-time phenomena.

Depending on the problem solving state and on the ear-

lier performances of the management components, different

management components are chosen and connected. The set

of available management components implementing simple

administrative tasks can be modified over time in order to

cope with evolving conditions and requirements.

As illustrated in Figure 1, we defined a two-layer architec-

ture. A first layer, the resource management layer, consists

of the available management components administered by a

Task Manager. As we will see in more details, management

components can be simple or composite (i.e. made of other

management components). The purpose of the Task Man-

ager is to provide a shared communication channel and to

decide on the management components to be activated. Such



decisions are driven by higher-level management strategies,

which are implemented via specific configurations of the

Task Manager. A second layer, the manager adaptation

layer, consists of a Strategy Manager, which supervises and

reconfigures the lower, task management layer. Namely, the

Strategy Manager observes the solving process executed at

the task management level. It develops a runtime model of

the autonomic management process, including information

about the management strategies formed and the associated

management components activated. As such, the runtime

model contains information about the performances of the

activated components and about the advances of the conse-

quent management actions. Based on this information, the

Strategy Manager may chose to dynamically modify the

service composition process, in order to obtain an overall

behavior that more closely corresponds to its high-level

administrative goals. At present, the Strategy Manager has

the ability to add, remove or reconfigure management com-

ponents, as well as to reconfigure the Task Manager’s service

composition parameters. For example, a management com-

ponent identified as faulty or inefficient can be dynamically

replaced by an alternative component by correspondingly

reconfiguring the Task Manager’s communication channel.

B. Resource Management layer

1) Autonomic management components: As indicated,

our approach to developing autonomic management is to

specify and implement administrative operations as loosely-

coupled service-oriented components. In this approach, an

autonomic manager is made of several such management

components interacting through an event-based protocol.

The component-based approach leads to modular, evolvable

code and allows the reuse of fine-grained management

operations. Using service orientation brings additional flexi-

bility since service components can be dynamically loaded,

unloaded, adapted and interconnected.

We defined an autonomic management component via the

following interfaces:

• Goal management interface. This interface allows spec-

ifying the component’s objectives. Goals are translated

by the component into specific actions to be undertaken

or into specific algorithm parameterizations.

• Event management interface. This interface is dedicated

to event reception and transmission. As we will see

in section 2.3 this interface exposes publish-subscribe

methods.

• Lifecycle management interface. This interface allows

manipulating or getting information on the component’s

state. A component can be installed, started, stopped or

resumed.

• Human-Machine Interaction (HMI) management inter-

face. This interface defines methods that provide user-

friendly information about the component’s purpose

and state during runtime.

• Configuration management interface. This interface al-

lows the selection and configuration of non-functional

features, such as persistency or security.

Our component model follows a fractal approach in the

sense that a management component can be simple or

composite. A simple management component implements

an administrative operation (or a management activity) via

a receiveEvent method, which is part of the Event man-

agement interface. This method takes a set of events as

input and delivers a set of events as output. It performs

a basic management action related to monitoring, analysis,

planning or execution, or to any combination of these preoc-

cupations. A composite management component replicates

the architecture presented in Figure 1: it contains a set of

management components, a Task Manager and a Strategy

Manager. Simple and composite management components

expose the same interfaces and are manipulated in the same

way. Specifically, a Task Manager does not know the nature

of its management components (simple or composite).

This structure allows our solution to scale to large num-

bers of management components. In simplest cases, a flat

architecture made of a small number of components will be

sufficient. In more complex systems, possibly distributed, it

is of major importance to group management components

into a same composite in order to be able to manage

correctly the reasoning process (more precisely, to be able to

express the way to control components). Such grouping can

be driven by similarities in matters of concerns, location,

response time, etc.

Autonomic management tasks are generally difficult to

develop because they require different skills. First, devel-

opers must be experts in the underlying managed system

in order to collect the right data at the right time, decide

when enough data is received, perform relevant analysis,

and decide on the right actions to be performed and so on.

Only domain experts can have such capabilities. In addition,

developers also need specific skills in component-based

software engineering, in order to design and develop the

set of interfaces and non-functional mechanisms presented

before. For instance, event management requires mastering

synchronization issues, which are highly error-prone in

most languages. Such thorny non-functional features demand

complicated code to be delivered. Experience shows that

such double expertise is almost impossible to achieve or

find.

For these reasons, we developed a container-based ap-

proach for designing and implementing our service-oriented

component model. Our purpose was to clearly separate

the code related to domain-specific autonomic tasks (e.g.

monitoring or planning) from the code dedicated to generic

component-based software issues (e.g. dynamicity, late bind-

ing, synchronization or error handling). The idea is to allow

domain experts to focus on familiar concepts and ignore, as

much as possible, complex technical code related to software



Figure 2. A container handles non-functional aspects like synchronization
or HMI

issues. A container can be seen as an envelope that manages

the execution of domain-specific code. It intercepts incoming

and outgoing calls in order to insert domain-independent

technical code, as needed for the execution of domain-

dependent operations. The container can be parameterized

via a configuration file.

As illustrated in Figure 2, the purpose of the container

is to add technical code related to the engineering of

service-oriented component-based systems. In particular, it

deals with event communication, administration, HMI and

lifecycle. The container acts as a black-box to the domain

expert. Hence, from the domain expert’s point of view, a

management component is defined by an autonomic task and

by a configuration file. The configuration file provides all the

necessary information to activate and insert the management

component in a larger reasoning context. It specifies the

events of interest to the component and the component’s

triggering condition. A triggering condition specifies the

situation(s) under which a component will execute. It is a

predicate based on data (events) that the component receives

over a given period. Specifications in the configuration file

are used to generate code in the container. At the same time,

it is important to note that the configuration file is presented

in domain-oriented terms so that domain experts need not

be aware of all the technical implications.

The container is itself made of several service-oriented

components. They are invoked when specified component

methods are called. A Synchronizer service is an important

part of the container. It is called whenever an event is

received. It is made of complex Java code dealing with

synchronization issues. Specifically, it deals with the treat-

ment of concurrent events and with the memorization of

received events. Event storage follows a periodic strategy:

all the received and emitted events are persisted in a local

file and preserved for a configurable duration. Additional

events, considered to be of major importance, can be kept

in the local storage for longer than the configured duration.

At each event, the Synchronizer calls a triggering function

specified by the domain expert in the configuration file. As

soon as the triggering predicate is achieved, the management

component is turned to a ready state (via the component

Life-cycle interface).

We developed a number of additional container compo-

nents. For instance, a service-oriented component has been

developed to provide administrative information from the

container (i.e. the HMI service). As indicated on Figure 2,

this component has a dependency on the Synchronizer

service. The container also deals with the dynamic aspects

of the service-oriented components (e.g. automatic service

discovery and binding based on specified dependencies).

2) Task Managers: In the proposed architecture, auto-

nomic management components are grouped into a problem-

solving space controlled by a Task Manager. The purpose

of the Task Manager is twofold. First, it has to ensure

the effective communication between individual manage-

ment components. Second, it has to coordinate the global

problem-solving process. Management components commu-

nicate through events transmitted via a shared publish/sub-

scribe Event Manager, which is part of the Task Manager.

The role of the Event Manager is to distribute the events

to the right parties (i.e. impacted management components).

Events are organised into topics of interest. A topic of inter-

est (or topic) corresponds to a certain management concern,

or preoccupation. For example, a topic may represent the

state of a certain monitored resource, the presence or absence

of a certain problem type or the proposal of a certain kind

of management plans. For efficiency reasons, management

components are only aware of topics where data they can

interpret may occur. Therefore, the Event Manager uses a

publish/subscribe model, which delimits the area of interest

of each management component. Hence, management com-

ponents subscribe to topics they can interpret and publish

their results to topics affected by the data types they produce.

Management component activation is the second function

assigned to the Task Manager. The flexibility of CEYLON

relies on the ability to dynamically orchestrate the manage-

ment tasks under its responsibility. As illustrated by figure 3,

a special-purpose Controller is notified as soon as the

triggering condition of a management component is satisfied.

In that case, the Controller must decide on the activation of

the management component and possibly on its launching

time. Conflict resolution is an important aspect treated

by the Controller. This function prevents the activation of

conflicting management components when events triggering

their simultaneous execution occur. Such situation may arise

if alternative or redundant management components were

available for addressing the same management concern. For

example, multiple planning components may be introduced

to deal with the occurrence of the same problem type. A

different planning component may be preferable in diverse

execution contexts or when different business goals have

priority.

There are several ways to organize tasks activation and



Figure 3. The Task Manager ensures communication and the opportunistic
activation of management components.

thus different associated conflict resolution methods: it de-

pends on the manager requirements and complexity. In

simple case, one may, for instance, use a token-based

algorithm to obtain a turn by turn behaviour. If more

flexibility is required an algorithm based on inhibition and/or

activation might be required. In the default implementation,

conflict resolution is based on an inhibition mechanism:

the activation of a certain management component inhibits

the activation of conflicting management components. There

are several ways of implementing such method from using

activation lease time to using more bio-inspired algorithm

based on the tasks excitation for instance.

The accuracy of the conflict resolution mechanism relies

on the amount of information available at a given moment.

One classical solution to solve such problem is the use of a

temporal window which represents a fixed time period. The

size of the window depends on the manager requirements.

During such a period, the Controller may receive several

notifications of readiness. At the end of the period, it uses

a decision function to select the best component(s) to be

used, depending on the problem solving state. When there

is no conflict between potential autonomic components, the

size can be shortened. The Controller is not used in this

situation, as management components do not have to ask

for an authorization to start. We readily acknowledge that

using a temporal window may delay important decisions.

On the other hand, however, deciding on the activation of a

component right away frequently leads to wrong decisions.

Conflicting or corroborating events often occur very close in

time and they have to be all considered in order to properly

solve a case.

C. Manager Adaptation: The Strategy managers

The purpose of the Strategy manager is twofold. First,

it has to transform high-level goals specified by a human

manager into decision functions used by the Task Manager.

At present, decision functions are expressed as configuration

tables specifying the mapping between topics of interest and

management components, as well as preferred management

components in different contexts. The Strategy Manager

has also to dynamically supervise and reconfigure the Task

Manager in order to achieve its goals. s indicated in Figure 1,

the Strategy Manager develops a runtime model of the au-

tonomic management process. A runtime model, as defined

in [5], presents views of various aspects of an executing

system and is hence an abstraction of runtime phenomena.

Such a model is useful to support dynamic adaptation of

software-based systems. In our case, the runtime model

includes:

• Management component profiles, describing the com-

ponents’ characteristics in different contexts. Profiles

may include: performance characteristics - response

times or consumed resources; the efficiency for solving

different problems; or dependability characteristics -

reliability or safety. A management component may

feature different characteristics in different contexts.

Additionally, management components may be profiled

in isolation or as part of larger collaborations with other

components.

• The current state of activate management components

(e.g. which components are presently active and for

how long have they been executing?). This information

is used for dynamically detecting and replacing ineffi-

cient or blocking management components. It is also

used for updating the management component profiles.

• A history of signaled problems and consequently acti-

vated solutions. This information serves to evaluate the

efficiency of current management strategies. It can be

used for detecting repetitive patterns in the autonomic

system behavior, which may indicate the ineffectiveness

of current strategies.

Based on the collected information, the Strategy Manager

has the ability to change the way the integration of man-

agement components is conducted at the Task management

layer. Two main options are open. First, the Strategy Man-

ager can change the Task manager’s decision tables. Thus,

alternative reasoning paths can be explored. Otherwise,

the Strategy Manager has the ability to add, remove or

reconfigure management components. Such components are

available in a dedicated repository. They can searched, se-

lected, instantiated and deployed in the workspace controlled

by the Task Manager.

D. Framework implementation

To implement our approach, we have used an extensible

service-oriented component model, namely iPOJO [9] [10],

which is available from the Apache foundation and is

based on OSGi. OSGi supports the dynamic deployment of

services without requiring any prior knowledge of the ser-

vice implementation. In addition, it provides infrastructural



services such as a service repository and a lightweight, local

communication support.

IPOJO provides important OSGi extensions, including

distributed communication and automatic service discovery

and binding for dynamically resolving service intercon-

nections. An iPOJO component provides server and client

interfaces exposing its functionalities and dependencies,

respectively. At run-time, an iPOJO component is managed

by a container, which injects non-functional facilities into the

application component as necessary. IPOJO functionalities

are implemented following the service orientation paradigm:

default facilities include service provisioning, service depen-

dency and lifecycle management. Once an iPOJO component

is deployed, the component’s provided functions are pub-

lished and made available as services, in conformance with

the SOC paradigm. In order for a component’s services to

become valid, all the component’s dependencies must be

resolved. IPOJO is seamlessly extensible with new func-

tionalities: each container can be configured with a different

set of services, implemented as handlers. Handlers are

themselves service oriented components with dependencies.

Dependencies are resolved at run-time, following the SOC

philosophy. These services can be in the container or in the

run-time platform. These properties made iPOJO a natural

choice for the current framework implementation. Hence,

each autonomic management component is implemented as

an iPOJO service component. For this purpose, we have

developed a number of additional handlers in order to define

our domain-specific, service-oriented model.

The Task Manager represents another, composite iPOJO

service. Autonomic management components are connected

to the Task Manager’s communication channel via dynamic

iPOJO bindings. The initial composition of a framework

instance is specified via a special-purpose XML file (e.g.

management component types, instances and initial sub-

scriptions to topics of interest). The specification language

is technology-independent, so as to facilitate possible migra-

tions to other Service Oriented Component platforms. The

strategy management layer supports simple administrative

operations, including the observation of active management

components, the detection of repetitive, inefficient, or faulty

activations, the dynamic addition or removal of management

components and the reconfiguration of component priorities

and topic associations.

III. EXPERIMENTS

A first prototype of CEYLON has been developed fo-

cusing on the conflict resolution mechanisms. An experi-

mental application was used for validating the framework

prototype. The application was implemented based on our

team’s experience with the ANSO Project. It supervises a

home and notifies a security company when an intrusion is

detected. Several video cameras are employed for capturing

images from different rooms. They communicate with the

application via specific drivers. Images are sent to a motion-

detector, which searches for differences that may indicate

movement. In parallel, images are sent to a persistence

service, which saves them to a local file system. Guards

notified by alarms may first analyse the available images

before intervening. The application runs on a home gateway

executing multiple applications. The goal of the autonomic

framework is to ensure the functioning of the security appli-

cation despite fluctuating gateway resources. Hence, tested

scenarios focus on the video cameras and image storage

service management, depending on the current application

state (i.e. normal or alarm) and on the available disk and

CPU resources.

The current conflict resolution mechanism is based on an

inhibition mechanism with a very short temporal window.

The Task Manager currently uses three tables for dispatching

data to tasks. First, a Topic Mappings Table defines classi-

cal publish/subscribe topic subscription. Second, a Conflict

Mapping Table describes couple of conflicting tasks. An

expiration duration states the time that a task should be

inhibited for when its conflicting counterpart is activated.

Finally, an Inhibition Status Table shows the inhibition status

of each task. When a task is inhibited, priority and expiration

time are stored in this table. At the same time, more than one

inhibition may concurrently exist for a single task entry. It

occurs when different tasks place inhibitors with overlapping

periods; in that case the highest priority is considered at each

moment. Mapping tables are initially set by system admin-

istrators and refined by the Adaptation Layer at runtime.

This refinement is the key of the opportunistic behavior of

the manager. The Task Manager uses the Topic Mapping

Table to forward data to subscribing tasks. For each of these

tasks, the Task Manager uses the Inhibition Status Table

to verify whether subscribing tasks are blocked. If the task

is currently blocked, the priority of the incoming data is

compared with the priority of the blocked task inhibitions.

If the incoming data has a higher priority, the inhibition

is ignored. Otherwise, the affected task is discounted. The

conflicting tasks are blocked, in accordance with the Conflict

Mapping Table.

The framework instantiation consisted of four Composite

management components linked in a ”classic” control-loop:

• The monitoring Composite uses three management

components observing the alarm service state, the CPU

utilization and the disk consumption levels. These com-

ponents produce data of types: monitor.alarm, moni-

tor.CPU and monitor. disk.

• The analysis Composite uses four management compo-

nents for processing monitored data. The first compo-

nent detects the presence or the absence of alarms. The

others detect the crossing of different predefined thresh-

olds by the consumptions of disk and CPU. These com-

ponents are instances of the same implementation but

are configured with a different threshold and activated



by different topics. One is activated by monitor.CPU

with a threshold set to 95% of the CPU capacity.

The other two analyzers are activated by monitor.disk

data with thresholds set at 80% and 90% of the disk

capacity. The four analysis component produce results

of different data types and priorities: analysis.alarm

(priority 2) and analysis.non-alarm (priority 4), anal-

ysis.CPU (priority 3), analysis.disk1 (priority 1) and

analysis.disk2 (priority 1).

• The planning Composite contains four management

components: Cam Planner, Standard DiskPlanner,

Alarm DiskPlanner, AlarmCPU DisPlanner.

• Four execution management component were necessary

for the execution Composite for managing camera

activations, deleting a certain quantity of old images,

erasing one image out of every given number and

compressing recorded images.

The Cam Planner MR decides to switch on/off cameras lo-

cated in rooms with no access points, depending on the alarm

state. This planning task is activated by the analysis.alarm

or analysis.non-alarm topics and issues plan.camera-on and

plan.camera-off. The Standard DiskPlanner component, ac-

tivated by analysis. disk1 topic, decides to delete 40% of

the stored image. Alternatively, The Alarm DiskPlanner

task can be activated by analysis.alarm, analysis.disk1, or

analysis.disk2 topic. Its decision depends on two possible

data type combinations. When analysis.alarm and analy-

sis.disk1 data types occur simultaneously, this component

orders registered images compression. However, when disk

usage approaches the maximum, the planner tries to save

the most recent images.

Therefore, when activated by the concurrent occurrence

of analysis.alarm and analysis.disk2 data, the same Alarm

DiskPlanner task decides to delete 40% of the oldest image

records. The Alarm DiskPlanner task only proposes a disk

management action in case an alarm is present; this planner

remains inactive in the absence of an alarm. The default

inhibition state of the Alarm DiskPlanner was set to 2.

This enables data of type analysis.alarm (of priority 2) to

activate this component. However, it prevents analysis.disk1

and analysis.disk2 (of priorities of 1) to activate this com-

ponent alone. When an alarm activates Alarm DiskPlanner,

the component also receives disk related data. The second

Ceylon prototype currently under development has been

extended, so as to support logical expressions simplifying

these settings.

The last alternative is AlarmCPU DiskPlanner activated

by analysis.alarm, analysis.disk1, analysis.disk2 or analysis.

It remains inactive as long as there is no CPU overload,

but once activated it receives all data affecting its decisions

(i.e. CPU, disk and alarm). For this reason, this planner’s

default inhibition state was set to 3 (priority of analysis.CPU

topic). When activated, this planner orders the deletion of

one in three recorded images. This planner preserves CPU

consumption avoiding image compression. When the second

disk threshold is crossed, this component orders the deletion

of 40% of images.

Some planning component decisions are conflicting.

These conflicts are managed by the aforementioned conflict

tables. The Cam Planner is not in conflict with any of

the other planners and never gets blocked. The three other

planning components try to mutually inhibit each other,

whenever active, using the maximum priorities of the data

that activates them. Based on analysis data priorities, the

AlarmCPU DiskPlanner can inhibit the Alarm DiskPlanner,

which can inhibit the Standard DiskPlanner.

The fully implemented application works with real video

cameras. However, for better controlling the scenarios, ex-

perimental drivers simulate the existence of multiple cam-

eras. The results are displayed in Figure 4. This graph shows

the percentages of CPU and disk consumption, the starting

and stopping of alarms and the alternate activation of the

four execution management components.

The starting and stopping of alarms was sensed by the

alarm monitoring component and triggered the alarm anal-

ysis component. This component produced analysis.alarm

data which triggered the Cam Planner and resulted in data

of types plan.alarm-on. The graph shows the activation of the

camera almost superposed with the starting and stopping of

application alarms (e.g. at times 120s and 380s for starting;

and 210s and 460s for stopping). When more cameras

are activated (at 120s and 380s), the slope of the disk

consumption curve increases: more images are stored. When

the alarm was off, disk overloads were handled by the

Standard DiskPlanner ordering deletion (times 215s, 275s

and 330s).

On alarm (analysis.alarm) and first disk threshold (analy-

sis.disk1), the Alarm DiskPlanner was activated. The planner

ordered compression, by activating the compression execu-

tion component. The activation of this execution resource

occurred 5 times during the first alarm period, between 120s

and 210s. This strategy became less and less efficient as

the sizes of already compressed images could no longer

be reduced. On alarm and second disk threshold (analy-

sis.disk2) the Alarm DiskPlanner order deletion instead of

compression. This activation is shown at the approximate

time of 180s. The same component was activated at time

410s, but this time ordered by AlarmCPU DiskPlanner. This

occurred when data of type analysis.alarm, analysis.disk2

and analysis.cpu was simultaneously present in the com-

munication channel. However, when the disk consumption

was in-between the two thresholds (i.e. presence of analy-

sis.alarm, analysis.disk1 and analysis.cpu data), the Alarm-

CPU DiskPlanner chose the selective image deletion strategy

instead, activating the corresponding execution component

(plan.step-delete). This scenario occurs twice on the graph,

during the second alarm period, when the CPU threshold is

also crossed (i.e. at times 390s and 425s). The CPU overload



30%

50%

70%

90%

100 150 200 250 300 350 400 450 

Disk1

Disk2
CPU

start stop start stop

D
is

k
/C

P
U

 U
s
a
g
e

T
h
re

s
h
o
ld

s

Time (s)

Alarm

CPU
Disk

Erase
EraseFQ

Compress
Cam

Figure 4. The Task Manager ensures communication and the opportunistic activation of management components.

was induced by a processor-intensive application.

These results show how the proposed framework can han-

dle various administrative scenarios by dynamically creating

management strategies from components of various types.

The flexibility of the adopted solution allowed the seamless

definition of behaviours for handling diverse combinations

of external conditions.

IV. RELATED WORK

The importance of applying the service-oriented paradigm

to autonomic management applications is reflected by the

publication of specific Web services standards, namely the

Web Service Distributed Management [9]. In this context,

Miller [10] also shows the advantages of standardizing the

interfaces of autonomic management elements, as it allows

the creation of autonomic applications from individual ser-

vices developed by multiple providers. The availability of

such interfaces is vital for building adaptable autonomic

managers with dynamically interchangeable elements, as in

the case of our approach. In the autonomic computing field,

several projects have started to develop generic architectures,

engineering principles and execution platforms with reusable

capabilities that facilitate the creation of autonomic manage-

ment applications (e.g. IBM Autonomic Computing Toolkit
6 , Autonomia 7 , AutoMate 8 , BioNets 9 , Amorphous

6Autonomic Computing Toolkit: www.ibm.com/developerworks/
autonomic/overview.html

7Autonomia (University of Arizona): www.ece.arizona.edu/hpdc/
projects/AUTONOMIA

8AutoMate (Rutgers University): automate.rutgers.edu
9The Bio-Networking Architecture (University of California Irvine):

netresearch.ics.uci.edu/bionet

Computing 10 , Autonomic Networked Systems 11 or ROC
12 ). These projects have reached different maturity levels

and propose autonomic management functions and infras-

tructures that are mostly complementary with the proposed

solution. Therefore, the capabilities of existing platforms and

their possible integration with the proposed framework will

be continually studied and evaluated.

Other research areas relevant to our proposal are con-

cerned with the development of automatic reasoning func-

tions. Such areas include Artificial Intelligence, Robotics

and Automated systems. Most significantly, concepts related

to Multi-Agent Systems and Blackboard architectures [11]

seem most tightly related to our approach. Nonetheless,

in Multi-Agent Systems, agents are autonomous entities

capable of identifying and of negotiating with peer agents in

order to form necessary collaborations. In our approach, col-

laborations emerge from the simple reactions of management

resources to the occurrence of data they can interpret. This

behaviour closely resembles that of the Blackboard model

and consequently features similar advantages and difficul-

ties. In contrast to agents, the autonomous capabilities of

individual management resources are quite reduced, with the

connecting channel providing rather basic communication

facilities.

10Amorphous Computing: swiss.csail.mit.edu/projects/amorphous
11Autonomic Networked Systems (ANS) (Imperial College): www.doc.

ic.ac.uk/asher/ubi/ansproj
12Recovery Oriented Computing (ROC) project (Berkeley and Stanford

Universities): roc.cs.berkeley.edu



V. CONCLUSION

We believe that the service-oriented computing approach

brings the opportunity to reconsider the way we design

and implement many systems, in very different domains. Its

inherent modularity and dynamicity allow meeting stringent

requirements in an affordable way. This is the case of

autonomic managers, which are so far implemented using

particular, hardly replicable techniques.

In this paper, we have presented a framework for building

autonomic managers based on service-oriented components.

We believe that the major contributions of this work are the

following:

• The design and implementation of autonomic tasks as

services;

• The implementation of different management concerns

in isolation;

• The dynamic, opportunistic integration of available au-

tonomic tasks so as to obtain more complex behaviors

allowing the adaptation to fluctuating, unpredictable

conditions, as adaptable solutions are dynamically cre-

ated;

• The possibility to add, update or remove autonomic

tasks and modify their collaboration logic at run-time;

In addition, the approach allows domain expert to focus

on the management tasks of the monitored systems. Manage-

ment tasks are encapsulated in a dedicated component; the

component’s container taking care of most of the software

engineering issues.

REFERENCES

[1] H. Cervantes and R. Hall. Autonomous Adaptation to
Dynamic Availability Using a Service-Oriented Component
Model. In ICSE, pages 614–623. IEEE Computer Society,
May 2004.

[2] A. Diaconescu, Y. Maurel, and P. Lalanda. Autonomic
management via dynamic combinations of reusable strategies.
In Second International Conference on Autonomic Computing
and Communication Systems, Autonomics 2008, Turin, Italy,
September 23 - Sep 25 2008. ICST.

[3] A. Diaconescu and J. Murphy. Automating the performance
management of component-based enterprise systems through
the use of redundancy. In Proceedings of the 20th IEEE/ACM
international Conference on Automated software engineering,
page 53. ACM, 2005.

[4] Escoffier, Hall, and Lalanda. iPOJO: an extensible service-
oriented component framework. In IEEE SCC, Salt Lake City,
USA, 2007.

[5] R. France and B. Rumpe. Model-driven development of
complex software: A research roadmap. In FOSE ’07: 2007
Future of Software Engineering, pages 37–54, Washington,
DC, USA, 2007. IEEE Computer Society.

[6] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and
P. Steenkiste. Rainbow: Architecture-based self-adaptation
with reusable infrastructure. Computer, 37(10):46–54, 2004.

[7] M. C. Huebscher and J. A. McCann. A survey of autonomic
computing—degrees, models, and applications. ACM Com-
put. Surv., 40(3):1–28, 2008.

[8] D. M. Kephart, Jeffrey O. et Chess. The vision of autonomic
computing. Computer, 36, 2003.

[9] H. Kreger and T. Studwell. Autonomic computing and
web services distributed management, 2005. www.ibm.com/
developerworks/autonomic/library/ac-architect/.

[10] B. Miller. The Standard way of autonomic computing,
2005. www-128.ibm.com/developerworks/autonomic/library/
ac-edge2/.

[11] H. P. Nii. Blackboard systems, part one: The blackboard
model of problem solving and the evolution of blackboard
architectures. AI Magazine 7(2), pages 38–53, 1986.

[12] M. P. Papazoglou and D. Georgakopoulos. Service Oriented
Computing. Communications of the ACM, 46:25–28, October
2003.

[13] S. Sicard, F. Boyer, and N. D. Palma. Using components for
architecture-based management: the self-repair case. ICSE
’08: Proceedings of the 30th international conference on
Software engineering, pages 101–110, 2008.

[14] J. Yu and P. Lalanda. Integrating UPnP in a development
environment for service-oriented applications. In IEEE ICIT,
2008.


