
Architectural Integration Patterns for Autonomic Management Systems
Sylvain Frey ¹ ², Ada Diaconescu ¹ , Isabelle Demeure ¹

¹ Infres department
CNRS-LTCI, Télécom-ParisTech

Paris, France
{first name}.{last name}@telecom-paristech.fr

² ICAME department
EDF Research & Development

Clamart, France
{first name}.{last name}@edf.fr

Abstract—Large-scale, dynamic, distributed and open
autonomic systems pursuing multiple, possibly conflicting
goals are difficult to design, implement and maintain. Dealing
with the complex issues that such systems raise requires
complex, adaptive management logic. This paper focuses on
the integration of autonomic management resources as a key
feature for building complex autonomic systems. This paper’s
first contribution is an investigation, via a simple model, of
integration issues in autonomic management systems. The
discussion is illustrated via a reference use case involving
smart homes connected to a micro smart grid. The second and
main contribution consists in a collection of architectural
design patterns, described following the classical form used in
software engineering. The proposed patterns address different
classes of integration problems, mostly concerned with conflict
resolution. They are comparatively evaluated via a set of
quality attributes and exemplified via reference conflict
situations in the use case. Several possible extensions are
subsequently identified, including various pattern
compositions. The presented research is part of a more
general, broader approach towards a generic, reusable
framework for designing, developing and maintaining
autonomic systems.

Keywords- autonomic computing; self-* systems; complexity;
design patterns; integration; framework; software engineering.

I. INTRODUCTION

Complex systems require complex autonomic
management applications to administer them. Large scales,
dynamism, distribution, heterogeneity, openness and
multiplicity of (possibly conflicting) goals are common
factors of complexity in modern computer systems.
Designing, developing and maintaining autonomic
management applications for such systems is a difficult and
costly task, at best. The availability of generic, reusable
architectures, frameworks and methodologies would provide
significant help for addressing this problem. While partial
solutions do exist (e.g. [4,5,6,7,8]), considerable progress is
still required towards providing a comprehensive, seamlessly
reusable support for autonomic software.

The approach presented here is to consider system
integration as an essential requirement and challenge facing
the autonomic computing community [9,12]. Firstly, the pa-
per describes a general approach for designing complex ma-
nagement systems based on a modular, flexible and generic
model. This approach is illustrated with a concrete use case
from the micro smart grid domain. Integration issues –
mostly “conflicts” – are highlighted as a major obstacle to
designing proper autonomic systems. Secondly, the main
contribution of this paper comes as a collection of

architectural design patterns for system integration, in the
context of the presented autonomic system model. Following
the classical form used in software engineering, these pat-
terns identify an application context, describe an integration
problem and expose a solution that is exemplified in the pro-
posed use case. Patterns are compared based on a set of qua-
lity attributes and several pattern combinations are proposed.

The structure of this paper is the following: after a review
of related work in part II, part III exposes a generic model
for autonomic systems and discusses integration issues. Part
IV presents a reference use case illustrating the autonomic
model in concrete situations. Part V describes the proposed
integration patterns for management systems as traditional
software design patterns, with illustrations in the use case
and evaluation with respect to pre-defined quality attributes.
The final section concludes the paper and discusses further
research perspectives.

II. RELATED WORK

Organisational patterns in complex systems have been
investigated in various research domains, most notably
including multi-agent systems [10], robotics [27], service-
oriented enterprise systems [13] or bio-inspired applications
[19]. Seminal works in artificial intelligence such as [25,27]
established the need for sophisticated architectures for
designing and building complex systems.

The multi-agent domain shares certain paradigms with
the autonomic computing domain and hence represents an
important source of inspiration for integration solutions. For
instance, [10] provides a rich series of agent organisations,
with an analysis of their respective features, strengths and
weaknesses. While certainly useful, these organisations are
strongly coupled with the agent model which is not
straightforward to apply in the context of most industrial
autonomic applications [35]. A fortiori, autonomic
management systems feature specific organisational issues
(such as the management conflicts described below) that the
agent model is not specialised in. Similarly, [18] defines and
analyses “interaction patterns” in multi-agent populations.
These patterns are based on specific features of the agents
considered, such as their tendency to compete or collaborate
with their peers. Therefore their applicability is limited to
very special cases of autonomic system designs (e.g.
decentralised collaboration amongst autonomic managers).

Adjacent to the multi-agent and autonomic domains,
contributions such as [19,20,31] formulate biology-inspired
patterns based on low-level message-based communications
(data diffusion, replication, repartition) focusing on concerns
such as robustness, dynamism and scalability.

In industry, a significant number of solutions have been
proposed in answer to integration issues. Multiple service

and component-oriented technologies such as CORBA [36],
Java EE [37], .NET [38], Android [39], OSGi [13] or iPOJO
[14] targeted various properties such as modularity, code
reuse, loose-coupling or flexible deployment in large-scale,
open computer systems. Service-oriented architectures
[13,21,22] address interoperability and/or dynamicity issues.
While such approaches provide good integration solutions at
a basic, technological level, they remain too generic for
addressing domain-specific integration problems, such as
those occurring in autonomic systems (e.g. goal-level
conflict resolution).

Ceylon project [4] is a previous work relying on such
technological base for providing a domain-specific
framework for complex autonomic management systems.
Ceylon proposed a generic solution for dynamically
integrating autonomic management resources into complete
management loops. However, Ceylon covered solely some
of the integration patterns presented here. This paper extends
and generalises Ceylon's approach with a wider
investigation of integration solutions in the form of
architectural design patterns. While many of such solutions
have already been proposed and/or instantiated in various
domains (e.g. multi-agent systems, robotics, service-oriented
enterprise systems) their applicability to the autonomic
computing domain remains to be identified and documented.

III. GENERIC MODEL AND INTEGRATION CONFLICTS

A. A generic model for autonomic systems

The model presented here is solely introduced as a basis
for illustrating integration notions, issues (part IV) and
solutions (part V) in autonomic management systems.

The model makes a clear separation between managed
application resources and Autonomic Management
Resources (AMR), that belong to the application layer and to
the management layer, respectively. AMRs are specialised
components [4] compliant with the following “classic”
model [16]: the AMR core implements various autonomic
management functionalities, such as special-purpose Moni-
toring, Analysis, Planning and Execution defined in the
MAPE-K architecture [1,2]; the AMR container embeds
non-functional features such as communication handlers or
integration resources (cf. section C below). Communications
are based on models that favour loose coupling between
AMRs (e.g. publish/subscribe messaging or dynamic bind-
ings between standardised interfaces). For the sake of simpli-
fication and without loss of generality, this paper considers
that all communications are based on generic “messages”.

In addition to explicit communication, the model also
considers indirect influences between resources. For
instance, an application resource (e.g. a heater) may
influence another application resource (e.g. a thermometer)
exclusively via the environment (e.g. via the temperature of a
room). Fig. 1 introduces a graphical representation
formalising the model.

Based on this model, Fig. 2 depicts a “classic” autonomic
element, with a single AMR performing the entire autonomic
management loop for a single managed resource.

B. Complex autonomic management layers

Complex, adaptive management layers are required for
administering complex, ever-changing application layers –
i.e. involving a high number of heterogeneous, dynamic,
unpredictable application resources and multiple conflicting
management objectives. Building such complex management
layers can be accomplished by (dynamically) integrating a
reusable set of simpler management components, or
resources, as proposed for example in the Ceylon project.
Ceylon [4] considers open, flexible sets of loosely-coupled
AMRs implemented with advanced service-oriented
component frameworks [13,14,15]. Ceylon's AMRs are
highly modular, reusable components, each one
implementing one or several of the MAPE functionalities.
Using dynamic deployment, binding and reconfiguration,
Ceylon allows combining AMRs opportunistically for
forming complete management chains.

For instance, multiple Analyser instances with different
performances and execution costs may be run in parallel,
started or stopped, allowing the selection of the most
appropriate one according to available resources, time limits
or Quality of Service criteria. Based on these principles, the
management layer can be dynamically extended and adapted
to a wide range of managed systems, while favouring AMR
reuse and separation of concerns. In particular, AMRs can
participate simultaneously in several management loops
within the same management layer. A complex management
chain à la Ceylon is represented in Fig. 3.

Integration becomes a key concern when adopting this
type of approach for building complex management layers.
Specifically, integration may occur “internally” – i.e.
integrating AMRs in order to obtain complete MAPE loops
within one autonomic system (Fig. 3); and “externally” – i.e.
integrating independent autonomic management systems to
form a coherent, global autonomic system (Fig. 4).

Figure 3: complex management chain for a complex managed system [4].

managed
ressource

autonomic
management
resource

communication

indirect
influence

Figure 1: basic elements of autonomic systems.

Figure 2: representation of an autonomic element.

complex managed system

M AP

A

E

P

system
1

MAPE
1

system
3

MAPE
3

system
2

MAPE
2

Figure 4: integration of heterogeneous autonomic systems.

management
layer

application
layer

MAPE

The integration situations described in Fig. 3 (intra-
system integration) and Fig. 4 (inter-systems integration) are
slightly different. For the rest of this paper, it will be
considered that "AMR integration" encompasses both these
situations, whether or not the management layer comprises a
unique system or several ones.

C. Integration issues in complex management layers

While complex management layers featuring large sets of
heterogeneous, dynamic AMRs are a necessity, they also
raise a major and difficult issue: how to actually integrate
AMRs in order to obtain consistent, coherent management
systems, capable of reaching their administrative goals.
Integration comprises several inter-related sub-problems,
including communication, compatibility, synchronisation
and conflict resolution. This paper focuses on conflict
resolution, as one of the most difficult issues specific to the
autonomic domain. Further integration concerns will be
addressed in future extensions.

In the context of this work, “conflicts” are defined as the
clashing of contradictory management control flows, as
shown on Fig. 5 and 6 (conflicting AMRs are marked with
an “X”). Several situations may lead to such conflicts. Most
commonly, several AMRs may try to act on the same
managed resource, providing conflicting control commands
and leading to incoherent behaviours (left case in Fig. 5).
Another conflict situation that is typical to the presented
model may occur within integrated management chains,
when several communication flows converge onto a single
AMR (right case in Fig. 5). For instance, two Planning
AMRs are deployed on the same application resource and
send contradictory commands to the same resource Executor.
Or, two Analysers send contradictory reports to the same
Planner in the management chain.

In addition to such direct conflict situations, indirect
conflicts can be derived as caused by transitive influences at
the application level (left on Fig. 6) or in the management
chain (right on Fig. 6). For instance, two devices influence
temperature in a room, therefore their temperature managers
are potentially in conflict. Or, a conflict between two
Planners in the management chain may result from an
upstream conflict between two Analysers.

Integrating autonomic systems requires resolving their
integration conflicts. Still following the principle of

separation of concerns, special-purpose integration resources
and specific integration communications are added to the
model, as an addition to core management functionalities
(i.e. MAPE functions). Integration resources perform
specific conflict-resolution functionalities, which will be
described in pattern definitions. Fig. 7 shows a formal
graphical representation of integration resources.

There are several ways integration resources can be
inserted into the management layer. As shown on Fig. 8, they
can be: deployed as stand-alone components, or AMRs (left
in the figure); or injected into an AMR container (centre); or
mixed with management logic (right). Injecting integration
logic into an AMR container enables it to intercept and alter
incoming and outgoing communications, while remaining
completely transparent to the core management logic.

Next section exposes a reference use case to illustrate an
utilisation of our formalism for modelling concrete
autonomic management systems and analysing conflict
situations. Possible solution semantics to these conflicts are
then proposed.

IV. ANALYSIS OF CONFLICTS IN A REFERENCE USE-CASE

This section presents a sample use case formulated with
the proposed model. Conflicts occurring in this use case are
reused in part V as examples for introducing the proposed
conflict-resolution patterns.

A. Autonomic management in smart houses and grids

Let us consider a smart house connected to a smart
electrical grid. Sensors allow measuring environment
parameters, such as room temperatures and grid load. For the
sake of simplification, we consider that the grid could be
either under high, normal or low load, where the load
represents the ratio between consumption and production in
the grid. High load signifies that production should be
increased and/or consumption decreased; low load implies
the contrary. A grid undergoing abnormal loads may lead to
inconvenient energy bills and possibly to blackouts. In this
scenario, the electrical equipments of the house are expected
to participate in load regulation by lowering their
consumption when the grid is overloaded.

In one of the smart house's rooms, an electrical heater has
its emission power controlled by two AMRs (cf. Fig. 9). A
temperature AMR (“AP heaterTemp”), sensitive to the
temperature in the room and to user instructions, tries to
maintain optimal comfort. At the same time, an energy AMR
(“AP heaterEnergy”), sensitive to the grid load, tries to
reduce the heater's consumption whenever load peaks occur.
In the house's kitchen, a smart refrigerator comes equipped
with an energy AMR (“APE refrigEnergy”). In case of high

Figure 5: direct conflict cases, resource level (left) and management level
(right).

Figure 7: integration-specific elements of the proposed model.

X

X X X

X X

X

X

X'

X'

integration
resource

integration-specific
communication

Figure 8: possible deployment of conflict resolution resources.

Figure 6: indirect conflict cases, resource level (left) and management level
(right).

load, this AMR can shut down the refrigerator, stopping its
consumption for a limited amount of time (typically one
hour, once a day) without threatening its food content.

Fig. 9 represents the use case using the proposed model,
with several interconnected MAPE-like AMRs. Several
indirect influences are also exemplified. E.g., the heater
indirectly influences the room thermometer via the room's
temperature. Similarly, the refrigerator and the heater
indirectly influence the load meter through their
consumptions on the electrical grid.

B. Semantics of the autonomic systems

Considering the described devices and corresponding
AMRs, two conflicts can be identified and require
preventive resolution.

1) Heater management conflict
The two Analyser-Planner AMRs on the heater (“AP

heaterTemp” and “AP heaterEnergy”) are conflicting as they
attempt to control the same “E heaterPower” Executor for
setting the heater's emission power. For instance, on a cold
winter night, the “AP heaterTemp” may want to set a high
emission value in order to maintain comfortable conditions.
On the other hand “AP heaterEnergy” may detect high
consumption levels on the grid – since many electrical
heaters would work hard in the neighbourhood – and try to
lower the heater's power.

This conflict happens because the two “AP” AMRs
follow fundamentally incompatible goals: temperature
management and energy management. Therefore, an explicit
solution to this conflict must be provided for the entire
system – heater and AMRs – to behave “properly”.
Certainly, such solution will highly depend on the expected
system behaviour from the user perspective. We propose
here two business-level approaches for the solution:

“all or nothing”: only one of the two “AP” AMRs
controls the heater at any given moment; the other one's
command is ignored;

“compromise”: an intermediate value is used for setting
the heater's emission power; this value is the mean of the two
“AP” AMR advices.

The “all or nothing” solution solves the conflict by
neglecting one of the objectives against the other, whereas
the “compromise” one tries to fulfil both of them at the same
time – with the risk of satisfying neither.

It is important to ensure that the behaviour of the
management resources is compliant with the semantics of the
conflict resolution. Since the latter decouples management
decisions (i.e., heater reconfiguration plans) from effects at

the resource level (i.e. the actual value of the heater's
emission power), the AMRs must be able to support such
situation. Indeed, if one AMR were adaptive, it could
compensate for and so cancel the effects of conflict
resolution. If both AMRs were adaptive, conflict resolution
may work but prove inefficient as both AMRs constantly try
to compensate in opposite directions. Hence, the
compatibility between resolution strategies and targeted
AMRs to integrate must always be considered.

For instance, let us suppose that at time T the “AP
heaterTemp” AMR proposes a value of 20 for the heater's
power (on an arbitrary scale), the “AP heaterEnergy” AMR
proposes 18 and a “compromise” resolution mechanism
eventually sets a 19 value on the heater. An adaptive “AP
heaterTemp” AMR, monitoring that its temperature objective
(20) is not reached, might decide at T+1 to compensate and
propose a value of 22 instead, yielding a final power at 20
and cancelling the energy AMR's influence, which is in this
example passive for the sake of demonstration. In the case
where both AMRs are adaptive, divergent behaviours can be
expected from the AMRs, as they each pull the value in its
own direction.

For this use case, let us consider that the management
resources, in particular all the analyser-planner (AP) AMRs,
are purely reactive and non-adaptive. Therefore, they will be
compatible with “all or nothing” semantics and will not cheat
“compromise” solutions. Other scenarios will be considered
to include adaptive AMRs in future work.

2) Electricity management conflict
The two energy AMRs operating on the heater (“AP

heaterEnergy”) and on the refrigerator (“APE refrigEnergy”)
are in conflict, since both devices interact with the electricity
grid and influence its load with their consumptions.
However, this kind of conflict is different from the heater
management one, since here the two AMRs follow the same
objective – energy regulation, while controlling different
managed resources.

During a load peak, one of the AMRs applying
consumption reductions may be sufficient to bring back the
load to normal levels, as it indirectly relieves the other AMR
from doing so. On the contrary, if one AMR allows high
consumption the other one may be forced to apply
consumption reductions that could have been avoided
otherwise. Worse still, the two devices reducing their
consumption at the same time might equally bring
undesirable consequences, such as after-effect load surges.

Therefore, a conflict resolution mechanism is necessary
for the two energy AMRs to integrate properly with each
other and maintain a consistent load. Without going too deep
into details, two features of this resolution are specifically
required:

“helpfulness”: whenever a device could help load
control by reducing its consumption without harming its
functioning, this device's energy AMR should command so;

“coordination”: in case both devices are available for
reducing their consumption, they should not trigger it at the
same time. Instead, they should coordinate and fairly
designate a first energy saver that will actually reduce its
consumption, and a second one that will do so only in the
case where load does not go back to a normal level.

Figure 9: autonomic management in the smart home and grid use case.

heater
room

thermometer refrigerator
grid load

meter

M

AP

E

AP

M

APE

room
temperature

grid
load

grid
load

roomTemp

heaterTemp

heaterPower

heaterEnergy

gridLoad

refrigEnergy

This description of load management in an electricity
grid is arguably oversimplified, yet it shows some actual
issues, fairness and synchronisation, that the smart grid
community is facing [23]. [28] presents previous work on
more comprehensive smart grid scenarios and load
management, developed in collaboration with EDF (French
national electricity company). Part V presents possible
solutions for achieving this load management approach.

V. DESIGN PATTERNS FOR CONFLICT RESOLUTION

This section presents a number of generic design patterns
for addressing conflict resolution in the autonomic
management layer. Each pattern presentation starts with
elements of context, showing the particularities of the
conflict situations the pattern addresses. Then the pattern
solution is described using the notations introduced in part
III, with conflicting AMRs identified by an “X”. The impact
of conflict resolution on the management system is evaluated
with respect to a set of quality attributes, including:

overhead: the additional computations and
communications that the pattern solution introduces in the
management chain.

safety: the assurance that neither managed resources nor
AMRs evolve to an undesirable state.

conceivability: the difficulty in designing and
developing the pattern solution, particularly, with respect to
integrating legacy AMRs and handling different
management goals.

robustness: the ability of the pattern solution to resist to
and recover from the faults of its conflict resolution
resources, as well as to handle incorrect input.

evolvability: the ability of the pattern solution to adapt to
changes of the autonomic system, in particular to the
removal and arrival of conflicting AMRs.

scalability: the ability of the pattern solution to scale up
to a large number of conflicting AMRs.

 For each pattern an example application is proposed in
the context of the presented use case (part IV). This section
ends with a discussion on patterns comparisons and possible
combinations.

A. Monolith pattern

1) Context
Only a few simple management resources are conflicting,

the conflicts and their solution are clearly identified and
unlikely to change in the future. Decoupling management
logic and conflict resolution logic is not necessary. On the
contrary, a separation would induce unnecessary complexity
and overheads (i.e. over engineering).

2) Description

The logic of AMRs and of conflict resolution resources is
merged into a monolithic management solution.

3) Evaluation
Being a strongly-coupled solution, the Monolith can be

globally optimised for the specific logic of conflicting AMRs

and conflict resolution strategies. Hence, conflict resolution
overheads can be minimised. Moreover, the solution is
predictable and may be safety-proven.

However, the Monolith can only be applied to
moderately complicated cases that are unlikely to evolve
(few simple conflicting AMRs). Otherwise this solution
would become hard to conceive and maintain, since
introducing new management logic or modifying the conflict
resolution strategy would imply recoding the Monolith.
Finally, as a centralised entity, the Monolith represents a
bottleneck for communications with the managed system and
other autonomic systems.

4) Example application within the smart home use case
The Monolith pattern could indeed be applied to solve

the heater management conflict: the two “AP” AMRs (“AP
heaterTemp” and “AP heaterEnergy”) are merged with an
explicit resolution mechanism, implementing either the “all-
or-nothing” or the “compromise” solution.

On the other hand, a Monolith for load regulation in the
house might prove to be an undesirable solution. However
predictable, such a Monolith would be difficult to conceive
with respect to the specificities of each device and their
management resources. Furthermore, the Monolith being
neither adaptable nor scalable would make it difficult to add
new “smart” devices to the energy management system.

B. Dealer pattern

1) Context
The execution of conflicting AMRs is triggered by mana-

gement messages – i.e. AMRs are reactive, event-driven
components. The autonomic management architecture is
such that the incoming communication flows triggering these
conflicting AMRs pass through a single upstream AMR (e.g.
a set of conflicting Planners fed by a single Analyser).

2) Description

Since the flow of messages pass through a shared
resource before triggering conflicting AMRs, there is an
opportunity at this unique point to filter outgoing messages,
so as to avoid triggering conflicting AMRs down the
management chain. As a result, the filtering component (the
“Dealer”) prevents conflicts by starving all but one of the
conflicting AMRs. This implies that a single path is being
selected for execution amongst all conflicting possibilities in
the management chain. At the design level, the conflict-
resolution logic of the Dealer can be introduced as a special-
purpose handler in its container.

3) Evaluation
The Dealer has a low overhead, since it prevents conflicts

altogether and hence avoids useless computations and
communications. It does not require the introduction of new
components since the resolution code is introduced in the
container of an existing AMR. As the resolution logic
capitalises on the AMRs' reactivity to input messages, no
modifications are required on the conflicting AMRs. A
possible drawback, since the Dealer acts upstream the

Figure 10: Monolith pattern.

X
X

Figure 11: Dealer pattern.

X

X

conflicting AMRs, it may be unable to detect faults or check
the actual validity of the AMRs it dispatches messages to.
The Meta-Manager (section G below) may be combined with
the Dealer to avoid such situations.

The Dealer can be seen as a single point of failure of the
management chain and a bottleneck for communications,
with consequences on robustness and scalability. However,
since the Dealer relies on a central upstream AMR that
already exists in the management chain the aforementioned
limitations are the consequences of the management chain
design and not of the pattern solution.

4) Example application within the smart home use case
A Dealer can be deployed in the grid monitoring AMR

(“M gridLoad” on Fig. 9) that produces load information for
energy AMRs (“AP heaterEnergy” and “APE
refrigEnergy”). Hence, this Dealer can decide to route “high
load” messages only to one of the conflicting “energy”
AMRs, preventing the other one from triggering undesirable
consumption reductions.

One could also imagine an extended Dealer-based
solution to the heater management conflict. Namely, a
Dealer can be added as an additional component to the
heater's management chain, intercepting all incoming
messages addressed to the conflicting “AP” AMRs (“AP
heaterEnergy” and “AP heaterTemp”), starving one of the
two and feeding the other one normally. This architecture
would only allow a “all-or-nothing” solution to the conflict,
very close to the Controller pattern shown later in this
section. This would be an extended Dealer version, since a
special-purpose component would have to be added to the
management chain.

Within the Ceylon project, an early prototype version [3]
provided a generic mechanism for conflict resolution that
was similar to the Dealer, in that all AMR messages had to
pass via common Event Bus. Conflict resolution was
executed at this level by filtering out conflicting messages.

C. Aggregator pattern

1) Context
The autonomic architecture is such that all output

management flows of conflicting AMRs pass through a
single AMR (e.g. several conflicting Planners connected to a
single Executor).

2) Description

Contradictory orders or conflict-triggering messages are
intercepted by the conflict resolution resource – the
“Aggregator” – which in turn produces a coherent, conflict-
free solution as its output. The Aggregator’s conflict
resolution logic can rely on an abstract message-filtering
process (e.g. select higher priority messages or compute a
weighted sum), or be inspired by additional business
expertise. Similarly to the Dealer, the Aggregator logic can
be encapsulated as a handler in the shared AMR’s container.

3) Evaluation
The Aggregator integrates seamlessly into the

management chain since it does not require modifying any of

the AMRs’s business logic. Since it is placed downstream
from conflicting AMRs, it can ensure that the final result is
coherent, in particular in case an AMR is faulty or produces
unexpected messages.

The Aggregator’s synthesis of conflicting communica-
tions introduces variable overheads, depending on the actual
conflict resolution logic used. The Aggregator does not
prevent conflicting AMRs to execute, which may allow for
wasteful computations in case the synthesis uses the “all or
nothing” strategy (cf. part IV). Being centralised (with
respect to one conflict-resolution situation), it can be viewed
as a single point of failure and a communication bottleneck.
However, as for the Dealer pattern, this is a feature of the
management chain design and is independent from conflict
resolution.

4) Example application within the smart home use case
An Aggregator is a straightforward solution to the heater

management conflict: the heater's power emission Executor
(“E heaterPower” on Fig. 9) is extended with an additional
conflict resolution logic implementing either the “all-or-no-
thing” or the “compromise” solution. Such a smart heater
using an Aggregator pattern has been previously investigated
in [29].

In the energy management case, the conflicting flows
(i.e. the execution orders sent to the heater and the
refrigerator) do not converge to a single point and hence the
Aggregator pattern is not applicable.

D. Controller pattern

1) Context
Conflicts involve extensive numbers of AMRs, which

share neither any input nor any output flows (i.e. no single
upstream or downstream AMR). Neither the Dealer nor the
Aggregator pattern can be applied in this case. Yet,
conflicting AMRs are still reactive to messages and a
conflict resolution strategy based on message filtering can be
appropriate.

2) Description

A special-purpose centralised component – the
“Controller” – prevents clashes among conflicting AMRs by
diverting and controlling their incoming and/or outgoing
management flows. Several Controller variants are possible,
depending on the way in which management flows are
diverted. In the simplest variant, the Controller is
implemented within the middleware infrastructure ensuring
inter-AMR communication (e.g. as a special-purpose service
within an Enterprise Service Bus). It can consequently
intercept and control – e.g. filter-out – any management
flow, thus preventing the simulation activation of conflicting
AMRs [3]. In a more flexible Controller variant, conflicting
AMRs are allowed to receive all messages but must ask
permission from the Controller before executing their
management logic [4]. In this variant, only management
flows that are known to trigger conflicting AMRs are
actually diverted and controlled, by configuring the AMRs
that send or receive them to communicate with the

Figure 12: Aggregator pattern.

X

X

Figure 13: Controller pattern.

X X

Controller. This facility limits conflict-resolution overheads
to conflicting AMRs. Similarly, conflicting AMRs may be
allowed to execute, but be obliged to ask for the Controller’s
permission before sending any output management
messages. In either variant, the Controller does not take part
in the actual autonomic management business process, since
it does not act directly on managed application resources. Its
purpose is exclusively related to conflict resolution. For
instance, projects such as [5,8] feature Controller-like
dedicated conflict resolution resources.

3) Evaluation
The Controller can explicitly ensure desirable properties

of the AMRs it controls, such as forbidding their simulta-
neous execution or ensuring a priority ranking of their mana-
gement messages. These properties can be safety-proven.

The Controller introduces a new special-purpose
component and requires additional communication for
conflict resolution. While this introduces certain overheads,
the incurred delays can be limited to AMR groups that were
identified as potentially conflicting.

The interdependence level between the Controller and the
controlled AMRs is variable, depending on how specific the
Controller logic is with respect to the AMRs business logic.
Therefore, the system's designer can adapt their solution to
trade-offs such as precision of conflict resolution vs.
evolvability.

In the first Controller variant, the Controller's decision
logic may become difficult to figure-out for large numbers of
conflicting AMRs. In the last two Controller variants,
conflicting AMRs are forced to adopt a specific behaviour
(asking permission), which can be viewed as intrusive. At
the same time, the actual AMR logic involved in Controller
communication can be implemented as a special-purpose
handler in the AMR container (Fig. 13). In all cases, the
Controller’s centralisation introduces a single point of failure
and a communication bottleneck, potentially hindering
scalability with the number of conflicting AMRs. The Meta-
Manager pattern (section G below) can be introduced in this
case to alleviate such situations.

4) Example application within the smart home use case
A Controller can be used in the heater conflict situation

of the smart-home use case. More precisely, the two
conflicting “AP” AMRs (“AP heaterTemp” and “AP
heaterEnergy” on Fig. 9) are configured to ask permission to
an additional Controller component, either before executing
(i.e. just after receiving monitoring messages), or before
sending their plans to the Executor. In this solution, the
Controller only allows for an “all-or-nothing” resolution
strategy. Finally, the Controller pattern may be an overkill
for the heater’s simple conflict and was only exemplified
here for illustration purposes. In [4], Ceylon project provides
a more comprehensive example of a Controller application.

E. Hierarch pattern

1) Context
Conflict resolution is a feature of the management layer,

and it is not possible, or desirable, to completely separate
management logic from conflict resolution logic. Multiple
conflicting AMRs provide fine-grained management
functions (e.g. M, A, P, E or simple MAPE loops), while the

resolution logic handling these AMRs requires a higher-level
and more abstract overview of the management process.

2) Description

Conflict resolution is provided by a higher-level AMR –
the “Hierarch” – featuring both management logic and con-
flict resolution logic. At the autonomic management business
level, the Hierarch has a broader, more abstract view of the
managed application and can thus take better-informed
decisions at the global level. At the conflict-resolution level,
the Hierarch can capitalise on its business-specific
knowledge acquired from its global position and scope (in
comparison to the conflicting AMRs) in order to take better-
informed, globally-optimised resolution decisions. To
resolve a conflict, the Hierarch uses special-purpose AMR
interfaces to act directly on the conflicting AMRs, in terms
of authoritative commands or optional recommendations.

The Hierarch differs from the Controller in that it is not a
dedicated conflict resolution resource, but a higher-level
manager that features conflict resolution amongst other
capabilities. Rather than intercepting the management flow
among conflicting AMRs, as in the Controller’s case, the
Hierarch executes in parallel with the AMRs and only
intervenes when a conflict is detected or predicted. Finally,
while in the Controller’s case the AMRs’ core business logic
was completely agnostic to the Controller’s intervention, in
the Hierarch case the AMRs core business logic may have to
take into account specific recommendations or orders from
the Hierarch.

From a certain perspective, the Hierarch pattern can also
be compared with the Monolith, since management business
logic and conflict resolution logic are merged. However,
while the Monolith merges the logic of conflicting AMRs
with the resolution logic, the Hierarch maintains conflicting
AMRs independent (with all the modularity and flexibility
advantages provided by that approach). Conversely, the
Hierarch capitalises on the availability of an already existing
high-level AMR to place resolution decisions within the
context of more knowledgeable management logic.

Many research proposals within the autonomic
computing domain have proposed hierarchical management
solutions similar to the Hierarch pattern, e.g. [33,34].

3) Evaluation
The Hierarch involves little overheads since it introduces

no special-purpose integration component and since it does
not divert “normal” AMR management flows. Since its
resolution logic is mingled with and reliant upon its
management logic, the Hierarch’s evolvability depends on
the evolvability of its management logic. With this
consideration in mind, the Hierarch should withstand the
addition and removal of various AMRs with minimal
required modifications on the integration infrastructure.
Since it is centralised, the Hierarch’s scalability may be
limited by the number of AMRs it can supervise.
Nonetheless, since the Hierarch is based on an available
high-level AMR, this limitation is already inherent to the

Figure 14: Hierarch pattern.

X X

pre-existing autonomic system design. With respect to
robustness, a failure of the Hierarch component would
remove conflict-resolution support, while leaving the lower-
level autonomic management process unaffected.

4) Example application within the smart home use case
A Hierarch can be used to solve the energy-regulation

conflict. In this case, the Hierarch represents a central
coordinator, relying on a global view of energy
consumption/production for controlling energy savings. The
Hierarch is deployed as a stand-alone AMR and sends
energy-saving recommendations and/or commands to
conflicting “energy” AMRs (“AP heaterEnergy” and “AP
refrigEnergy” on Fig. 9). Capitalising on its global, higher-
level view of the house's and the grid’s load, it can predict
future load profiles and propose or impose better-informed
solutions to individual energy AMRs. Supposing a
reasonable number of devices in a house, scalability issues
inherent to centralisation should not be too critical, a priori.
As a more significant example, the Hierarch can be
beneficially applied for load management at larger grid
scopes (i.e. neighbourhood, city or country), in order to
provide high-level energy-management directives based on a
global grid-load model. In this case, scalability issues would
require a finely-designed hierarchy with progressively
increasing management abstraction levels.

F. Collaboration pattern

1) Context
The autonomic management logic must address multiple

administrative concerns, while remaining highly-adaptable to
frequent changes in managed resources, available AMRs and
targeted goals. A large, highly-dynamic and open set of
AMRs must be dynamically integrated into coherent mana-
gement chains. Centralised or hierarchical solutions cannot
meet scalability requirements and Monolithic conflict resolu-
tion cannot cope with frequent changes of conflicting AMRs.

2) Description

Each conflicting AMR embeds its own conflict
resolution logic, implementing a completely decentralised
algorithm. Overall conflict resolution results from
collaborations, negotiations and/or competitions among
conflicting AMRs. Several Collaboration variants can be
envisaged, depending on the nature of the AMR coordination
protocols. For instance, AMRs may use inhibition or voting
algorithms to designate a “conflict winner” that takes the
conflicting management decision. Or, AMRs may negotiate a
compromise solution. From a design perspective, conflict-
resolution logic is encapsulated as a special-purpose handler
within each AMR container. As before, this clearly separates
core AMR business logic from the resolution logic
controlling its execution.

A possible variation of this pattern is the stigmergic
collaboration pattern: instead of interacting directly with
explicit communications, the conflicting AMRs influence
each other via an indirect influence in the environment.

3) Evaluation
Being distributed and totally decentralised, a

Collaboration is likely to be highly robust – featuring no
single point of failure – and scale up well to a large number
of conflicting AMRs. Open Collaborations can allow great
evolvability, supporting the conflicting AMRs' churn and
their behaviour evolutions over time.

However, decentralised systems are also difficult to
conceive and may show a high communication overhead.
Complete control, overall optimisation and predictability of
global system behaviour can also be extremely difficult to
attain [11,24]. Therefore, a Collaboration may be
inappropriate in case high reactivity is required from the
management system. Global safety properties of the
Collaboration might prove hard to figure out and to
implement. The solution is rather intrusive since it imposes a
specific behaviour (i.e. collaborating, negotiating or
competing) on the conflicting AMRs.

4) Example application within the smart home use case
A Collaboration is an extremely robust and scalable

solution to the energy management conflict. Decentralised,
peer-to-peer algorithms such as “firefly” [17], [30] or [32]
are well-known for their applicability to distributed
synchronisation. Given the limited number of devices in a
house, this solution might seem like an overkill. However,
synchronisation and coordination issues in smart grids
appear as well at the city, region or country level where
excellent scalability and robustness are required.

One could also imagine a decentralised solution to the
heater management conflict: the two “AP” AMRs (cf. Fig. 9)
could either inhibit each other or compute a mean of their
plans with a distributed algorithm. However, given the lack
of scalability issues, such a solution is arguably
overcomplicated for this simple case.

G. Meta-Manager pattern

1) Context
The management layer itself needs to be adaptive, self-

configuring, self-optimising, self-repairing and self-
protecting, in order to cope with versatile and unpredictable
application resources and contexts. Quantitative parameters
of the AMRs, as well as conflict resolution resources, must
be dynamically monitored and adapted throughout the
autonomic system’s life-cycle.

2) Description

A Meta-Manager monitors and adapts the conflicting
AMR(s), in parallel with the autonomic layer process (upon
which it does not intervene directly). Conflicting AMRs are
managed application resources for the Meta-Manager.

A Meta-Manager is not a Hierarch since it is a manager
of management and conflict resolution resources, whereas
the Hierarch is an AMR in the management layer that

Figure 15: the Collaboration pattern.

Figure 16: Meta-manager pattern.

AM²

X

meta-
management
layer

management
layer

AM²

performs conflict resolution in the main management flow.
The Meta-Manager is not a Controller since a Controller is a
special-purpose resource dedicated to conflict resolution,
whereas a Meta-manager is a general-purpose, meta-level
AMR, here managing AMRs in order to solve conflicts. The
Meta-Manager can intervene directly on the AMRs’ core
business logic, or act to adapt and optimise the AMRs’
specific conflict-resolution logic. Finally, the Meta-Manager
can also be used to regulate special-purpose conflict-
resolution components, such as the Hierarch or the
Controller (cf. section H below).

3) Evaluation
As the Meta-Manager executes in parallel with the lower-

level autonomic management layer, it introduces little or no
direct overheads in the autonomic management chains. As a
central decision system, it can manage critical properties of
the management layer, such as response times or Quality of
(management) Service. In particular, the Meta-Manager can
adapt and optimise conflict resolution mechanisms available
in the management layer. Provided that AMRs are
instrumented for meta-management, the management and
meta-management layers are clearly decoupled and the
Meta-Manager is not intrusive.

Described as such, a centralised Meta-Manager may raise
single point of failure and scalability issues. However, since
the Meta-Manager does not intervene directly in the
management flows or process, its failure will only suppress
support for conflict resolution and related adaptations.
Finally, the entire meta-management layer can be
generalised and implemented to be as rich and diversified as
a management layer may be.

4) Example application within the smart home use case
The Meta-Manager is not meant to implement one of the

conflict resolution mechanisms we described before.
However, a Meta-Manager allows making this mechanism
adaptive. For instance, supposing an Aggregator is used in
the heater conflict case (cf. Aggregator pattern), a Meta-
Manager can manage this Aggregator and adapt its semantics
(e.g. use either “all or nothing” or “compromise” strategies)
according to the context, or to a run-time performance
evaluation. One could also imagine a Meta-Manager
deploying several resolution patterns successively, and
choosing the best one according to metric criteria.

Meta-Managers have been proposed by several software
engineering projects in the autonomic domain, e.g. [4,26].

H. Pattern combinations

The Meta-Manager solution is intended to be combined
with other conflict resolution mechanisms (or patterns). Ac-
tually it is compatible with all previously presented patterns.
Conversely, by design, the Monolith is difficult to integrate
with any other pattern (except for the Meta-Manager).

The Dealer, Aggregator, Controller, Hierarch and
Collaboration patterns can be combined with each other. In
particular, a single component can perform both Dealer and
Aggregator roles, resulting in a “Sandbox” inside which
conflicting AMRs evolve under control, with minimal
intrusiveness. The Sandbox is not a Controller, since a
Controller features additional communications dedicated to
conflict resolution, whereas communications in a Sandbox
form a standard management flow.

Controller and Hierarch mixed together is the kind of
hybrid solution that would be particularly appropriate for
load management in the smart home use case. Scalable,
open, robust but poorly reactive load management is ensured
by a decentralised Collaboration that takes into account local
appliances objectives, whereas a centralised Hierarch takes
arbitrary but quick decisions, forcing designated appliances
to shutting down in case of global emergency situations (risk
of blackout).

VI. CONCLUSION AND FUTURE WORK

This paper addressed integration as an essential
requirement and challenge in designing, developing and
maintaining complex autonomic systems – i.e. systems that
are large-scale, dynamic, distributed, open and pursuing
multiple, possibly conflicting goals. Such systems were
formally modelled based on a highly modular, flexible and
open architecture. The paper focused on conflicts as a key
integration issue to be addressed in autonomic systems.
Different conflict types were identified and depicted based
on the formal model, as well as exemplified in the context of
a smart home scenario.

The main contribution consists in identifying and
specifying a suite of architectural design patterns for solving
different classes of integration-related conflicts. The patterns
apply to a wide range of situations, depending on the needed
conflict resolution type, and they are open to variation and
combination. While the example use case shows rather
simple scenarios and resolution mechanisms, the patterns are
generic enough to embrace a rich spectrum of possibilities.
Most of the integration solutions described have already
been instantiated in various contexts of autonomic
computing, robotics or multi-agent systems (e.g. “Monolith”,
“Hierarch”, “Collaboration” or “Meta-Manager”). The main
contribution here is to identify and collect such architectural
solutions and propose them as an extensible collection of
integration patterns for autonomic computing. Additionally,
a number of the presented integration patterns are specific to
the architectural model that was adopted for building
complex, adaptive autonomic management systems (e.g.
“Dealer”, “Aggregator” and “Controller”).

The patterns were evaluated and compared via a set of
quality attributes. While still rather simple and informal,
these attributes bring an important evaluation feature that is
critical to choosing the appropriate pattern for a given set of
requirements. Future efforts will aim at further formalising
such quality attributes and gathering concrete experimental
data in support of their evaluation.

The example applications of patterns to the smart home
use case have been implemented in separate projects,
involving various contexts and technologies. This paper’s
contribution represents a step forward towards providing a
unified framework for guiding software engineers and

Figure 17: the Sandbox pattern combination (Dealer + Aggregator).

X

X

domain experts from modelling to implementing and to
maintaining autonomic management systems. Future work
will concentrate on completing this framework and
presenting it in the context of the comprehensive use case
featuring all presented examples.

ACKNOWLEDGMENT

This work is supported by EDF R&D via the CIFRE
funding of Sylvain Frey's Ph.D. thesis.

REFERENCES

[1] Jeffrey O. Kephart and David M. Chess. 2003. The Vision of
Autonomic Computing. Computer 36, 1 (January 2003), 41-50.

[2] J. W. Sweitzer and C. Draper, Autonomic Computing: Concepts,
Infrastructure, and Applications. CRC Press, 2006, ch. 5: Architecture
Overview for Autonomic Computing, pp. 71-98.

[3] Y. Maurel, A. Diaconescu and P. Lalanda, "CEYLON : A service-
oriented framework for building autonomic managers", 7th IEEE
Conference and Workshops on Engineering of Autonomic and
Autonomous Systems (EASe) 2010, University of Oxford, England,

[4] Y. Maurel, P. Lalanda and A. Diaconescu, "Towards a service-
oriented component model for autonomic management", 8th IEEE
International Conference on Services Computing (SCC) 2011.

[5] D.M. Chess, A. Segal, I. Whalley, and S.R. White. Unity :
experiences with a prototype autonomic computing system. In
Autonomic Computing, 2004.

[6] Shang-Wen Cheng. Rainbow : cost-effective software architecture-
based self-adaptation. PhD thesis, Pittsburgh, PA, USA, 2008.

[7] Autonomic Computing Laboratory, University of Arizona.
AUTONOMIA: An Autonomic Computing Environment.
www2.engr.arizona.edu/~hpdc/projects/AUTONOMIA/

[8] M. Agarwal, V. Bhat, H. Liu, V. Matossian, V. Putty, C. Schmidt, G.
Zhang, L. Zhen, M. Parashar, B. Khargharia, and S. Hariri. Auto-
mate : Enabling autonomic applications on the grid. In : autonomic
computing workshop, the fifth annual international workshop on
active middleware services (AMS) 2003.

[9] Dobson, S.; Sterritt, R.; Nixon, P.; Hinchey, M.; "Fulfilling the
Vision of Autonomic Computing," Computer, vol.43, no.1, Jan. 2010.

[10] Bryan Horling and Victor Lesser. 2004. A survey of multi-agent
organizational paradigms. Knowl. Eng. Rev. 19, 4 (2004), 281-316.

[11] J. Branke, M. Mnif, C. Müller-Schloer, H. Prothmann, U. Richter, F.
Rochner, and H. Schmeck. 2006. Organic Computing - Addressing
Complexity by Controlled Self-Organization. In Proceedings of the
Second International Symposium on Leveraging Applications of
Formal Methods, Verification and Validation (ISOLA). 2006.

[12] Dobson, Simon. "Facilitating a Well-Founded Approach to
Autonomic Systems," Engineering of Autonomic and Autonomous
Systems (EASE). 2008.

[13] OSGi alliance. Open Services Gateway initiative. www.osgi.org

[14] Apache Software Foundation. iPOJO, a flexible and extensible ser-
vice component model. felix.apache.org/site/apache-felix-ipojo.html

[15] Adele team, Laboratoire d'Informatique de Grenoble. Cilia mediation
framework. wikiadele.imag.fr/index.php/Cilia

[16] Kung-Kiu Lau and Zheng Wang. 2005. A Taxonomy of Software
Component Models. In Proceedings of the 31st EUROMICRO
Conference on Software Engineering and Advanced Applications
(EUROMICRO). 2005.

[17] M. Breza, J. A. McCann. “Can Fireflies Gossip and Flock? The
possibility of combining well-known bio-inspired algorithms to
manage multiple global parameters in wireless sensor networks

without centralised control.”, Technical Note, Department of
Computing, Imperial College London. 2008.

[18] Cakar, E.; Muller-Schloer, C.; , "Self-Organising Interaction Patterns
of Homogeneous and Heterogeneous Multi-Agent Populations," Self-
Adaptive and Self-Organizing Systems (SASO). 2009.

[19] O. Babaoglu, G. Canright, A. Deutsch, G. A. Di Caro, F. Ducatelle,
Luca M. Gambardella, N. Ganguly, M. Jelasity, R. Montemanni, A.
Montresor, and T. Urnes. Design patterns from biology for distributed
computing. ACM Trans. Auton. Adapt. Syst. 1, 1 (Sept. 2006), 26-66.

[20] J. L. Fernandez-Marquez, J. Lluis Arcos, G. Di Marzo Serugendo, M.
Viroli, and S. Montagna. Description and composition of bio-inspired
design patterns: the gradient case. 3rd workshop on Biologically
inspired algorithms for distributed systems (BADS). 2011.

[21] Roy T. Fielding. Representational State Transfer (REST) architecture.
www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

[22] World Wide Web Consortium (W3C). Web Services Architecture.
www.w3.org/TR/ws-arch/

[23] B. Becker, F. Allerding, U. Reiner, M. Kahl, U. Richter, D.
Pathmaperuma, H. Schmeck, T. Leibfried. Decentralized Energy-
Management to Control Smart-Home Architectures. ARCS'2010.

[24] H. Schmeck, C. Müller-Schloer, E. Çakar, M. Mnif, and U. Richter.
Adaptivity and self-organization in organic computing systems. ACM
Trans. Auton. Adapt. Syst. 5, 3, Article 10 (2010).

[25] Erann Gat. 1998. Three-layer architectures. In Artificial intelligence
and mobile robots, David Kortenkamp, R. Peter Bonasso, and Robin
Murphy (Eds.). MIT Press, Cambridge, MA, USA 195-210.

[26] Jeff Kramer and Jeff Magee. Self-Managed Systems: an Architectural
Challenge. In 2007 Future of Software Engineering (FOSE) 2007.

[27] Rodney A. Brooks. 1990. Elephants don't play chess. Robot. Auton.
Syst. 6, 1-2 (June 1990), 3-15.

[28] S. Frey, F. Huguet, C. Mivielle, D. Menga, A. Diaconescu, I.
Demeure. “Scenarios for an autonomic micro smart grid”. Technical
report, CNRS-LTCI Télécom ParisTech. To appear (2011).

[29] Frey, S.; Lalanda, P.; Diaconescu, A.; , "A Decentralised Architecture
for Multi-objective Autonomic Management," Self-Adaptive and
Self-Organizing Systems (SASO), 2010.

[30] R. Nagpal, “A Catalog of Biologically-inspired Primitives for
Engineering Self-Organisation” Workshop on Engineering Self-
organising Applications, Autonomous Agents and Multiagents
Systems Conference (AAMAS), Melbourne, Australia, 2003.

[31] M. Jelasity, A. Montresor and O. Babaoglu, “Gossip-based
Aggregation in Large Dynamic Networks”, ACM Transactions on
Computer Systems, 23 (3), pp 219-252, August 2005

[32] R. J. Anthony, “Emergence: a Paradigm for Robust and Scalable
Distributed Application”, Proceedings of the IEEE International
Conference on Autonomic Computing (ICAC), 2004

[33] J. Bourcier, A. Diaconescu, P. Lalanda, J. A. McCann. AutoHome:
An Autonomic Management Framework for Pervasive Home
Applications. ACM Trans. Auton. Adapt. Syst. 6, 1, Article 8. 2011.

[34] IBM. An architectural blueprint for autonomic computing, 4th
Edition. IBM Corporation, 2006.

[35] Danny Weyns, Alexander Helleboogh, and Tom Holvoet. 2009. How
to get multi-agent systems accepted in industry?; Int. J. Agent-
Oriented Software Engineering 3, 4 (May 2009), 383-390.

[36] Object Management Group (OMG). CORBA: Common Object
Request Broker Architecture. www.corba.org

[37] Oracle. Java EE: Java Platform, Enterprise Edition.
www.oracle.com/technetwork/java/javaee

[38] Microsoft. .NET framework. www.microsoft.com/net

[39] Google. Android mobile platform. www.android.com

	I. Introduction
	II. Related work
	III. Generic model and integration conflicts
	A. A generic model for autonomic systems
	B. Complex autonomic management layers
	C. Integration issues in complex management layers

	IV. Analysis of conflicts in a reference use-case
	A. Autonomic management in smart houses and grids
	B. Semantics of the autonomic systems
	1) Heater management conflict
	2) Electricity management conflict

	V. Design patterns for conflict resolution
	A. Monolith pattern
	1) Context
	2) Description
	3) Evaluation
	4) Example application within the smart home use case

	B. Dealer pattern
	1) Context
	2) Description
	3) Evaluation
	4) Example application within the smart home use case

	C. Aggregator pattern
	1) Context
	2) Description
	3) Evaluation
	4) Example application within the smart home use case

	D. Controller pattern
	1) Context
	2) Description
	3) Evaluation
	4) Example application within the smart home use case

	E. Hierarch pattern
	1) Context
	2) Description
	3) Evaluation
	4) Example application within the smart home use case

	F. Collaboration pattern
	1) Context
	2) Description
	3) Evaluation
	4) Example application within the smart home use case

	G. Meta-Manager pattern
	1) Context
	2) Description
	3) Evaluation
	4) Example application within the smart home use case

	H. Pattern combinations

	VI. Conclusion and future work

