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Abstract

Autonomic control is vital to the success of large-scale distributed open IoT systems, which must simultaneously  
cater for the interests of several parties. However, developing and maintaining autonomic controllers is highly diffi-
cult and costly. To illustrate this problem, this paper considers a system that could be deployed in the future, integ -
rating smart homes within a micro smart grid. The paper addresses this problem from a software engineering per -
spective, building on the authors’ experience with devising autonomic systems and including recent work on integ-
ration design patterns. The contribution focuses on a reference model for multi-goal, adaptable and open autonomic 
systems, exemplified via the development of a concrete autonomic application for the micro smart grid. Our long -
term goal is to progressively identify and develop reusable artefacts, such as paradigms, models and frameworks for 
helping the development of autonomic applications, which are vital for reaching the full potential of IoT systems.

Keywords:  autonomic control, software engineering, model, multi-goal autonomic systems, control loop integra-
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1. Introduction

The purpose of any computing system is to reach objec-
tives specified by an external authority. When multiple 
authorities can access the system, like in the IoT (Inter-
net of Things) context, system goals may be conflict-
ing,  while  targeting  overlapping  system parts.  More-
over, such systems must often scale to large numbers of 
highly-distributed resources and be adaptable to chan-
ges in their goals, execution context and constituent re-
sources  (the  systems  are  open).  Autonomic  or  self-* 
capabilities become key to the success of such systems.

This  paper  illustrates  this  challenge  via  a  multi-goal, 
adaptable  and  open  autonomic  system that  integrates 
several smart houses into a micro smart grid. To cover 
both the Autonomic Computing (AC) and IoT domains 
involved in this example, the paper employs the generic 
term autonomic control [1] to designate the system lo-
gic that manages available resources for attaining goals. 
The only means for an autonomic controller to pursue 
its objectives is via actions it can perform on such man-
ageable resources. To select actions the controller can 
rely  on  decision  strategies,  available  knowledge  and 
runtime information from the environment and the sys-
tem state.  The  key  challenge lies  in  developing  the 
controller  logic  that  can  successfully  pursue  system 
goals while ensuring essential system characteristics – 
scalability, robustness, adaptability and openness. 

We approach this challenge from a Software Engineer-
ing (SE) perspective. Our aim is to identify, specify and 
develop reusable artefacts for analysing and designing 
autonomic  control  systems  with  the  aforementioned 
properties. The presented work relies on our experience 
with building autonomic frameworks and systems  [2]
[3][4][5][6]. The long-term aim is to build a compre-
hensive reference model for autonomic systems. 

The proposed reference model is constructed on the as-
sumption that  the development  and adaptation of  any 
realistic autonomic system will rely on the  integration 
of managed resources and control elements of different 
types;  integration can occur statically or dynamically. 
An important challenge lies in identifying and bringing 
together  the  necessary  types  of  abstract  entities and 
concrete  control elements that can be used for system 
design  and  integration.  Abstract  artefacts  can  include 
architectural styles,  design patterns and layering tech-
niques  over  several  axes  of  abstraction.  Control  ele-
ments include relatively straightforward control tasks – 
such  as  monitoring,  decision-making,  execution  or 
knowledge-management; entire control loops; or com-
binations of the above [5][6][7]. They can be function-
ally organised based on well-defined abstract  entities, 
like those indicated above, and interconnected via hard-
coded or loosely-coupled bindings. The overall integra-
tion process can be controlled in a fully centralised, de-
centralised or hierarchical manner [3][4][5][6][7][8].



Another important  challenge lies in coordinating con-
trol elements so as to obtain coherent controllers  that 
can pursue several  goals,  adapt dynamically and sup-
port highly-distributed, plug and play resources. Of ma-
jor interest here is the detection and resolution of  con-
flicts that  may occur  when  integrating  elements  with 
contradicting goals [4] or control strategies [5]. The re-
ference  model  presented  here  focuses  on  addressing 
these two major challenges. Other important concerns, 
such  as  timing  and  synchronisation  of  integrated  ac-
tions are part of ongoing research not covered here. The 
authors do not claim the novelty of all artefacts in the 
reference model. Indeed, most of these can be found in 
related fields such as automatic control  [9], collective 
adaptive  systems  [10],  multi-agents  [8][11],  robotics 
[12],  cybernetics  [13] or  autonomic  systems  [7][14]
[15]. These provide a rich repertoire of solutions that 
address different parts of the overall challenge. 

This  paper’s  contribution  consists  in  identifying  and 
extending existing artefacts  that  can  be employed for 
designing autonomic control systems, and assimilating 
them into a coherent  reference  model.  Some  key as-
pects of the proposed contribution include: rendering 
explicit the conceptual elements included in goal defi-
nitions;  defining  the  problem  of  building  autonomic 
controllers as a problem of mapping declarative actions 
(goals) into concrete actions (on managed resources), in 
a context-aware and extensible way; bringing together 
existing SE techniques for splitting the mapping prob-
lem into recursively smaller  elements  and  integrating 
such elements into flexible overall solutions; defining 
integration conflicts and ways of resolving them; apply-
ing architectural templates and agent organisation tech-
niques to ensure system coherence and runtime flexibi-
lity. This is illustrated by developing a multi-goal, ad-
aptable and open autonomic micro smart grid.  

The ongoing aim is to help answer questions on: How 
to develop scalable and adaptable feedback loops? How 
to  integrate  multiple  feedback  loops  so  as  to  pursue 
many goals at different scales? How to deal with sys-
tem dynamism and  openness?  Addressing  these  con-
cerns  is  vital  for  reaching  the full  potential  of  Auto-
nomic  Computing  and  IoT  paradigms.  The  proposed 
contribution is relevant to both autonomic systems in 
general – as it helps design multi-goal, highly-distribu-
ted and adaptive autonomic managers; and to IoT sys-
tems – as it shows how autonomic controllers built in 
this way can control system resources to ensure requi-
red properties and functions. 

Section 2 describes the sample micro smart grid appli-
cation,  highlighting  its  requirements  and design  chal-

lenges. Sections 3 and 4 introduce the conceptual and 
architectural  aspects  of  the  proposed  model,  respect-
ively,  illustrating  them via  concrete  design  examples 
from the micro smart grid. Section 5 relies on these ex-
amples to illustrate the complete design of the applica-
tion.  Section  6  discusses  related  work  and  section  7 
concludes the paper and indicates future research. 

2. Smart Houses meet Micro Smart Grid

2.1 Overall system 
In a near-future, it can be envisaged that smart homes 
integrate with smart grids to form large-scale, highly-
distributed, dynamic and open IoT systems. This paper 
considers this type of system as a relevant use case for 
the problem addressed. For the sake of clarity and ex-
pressiveness,  the  system model  is  often  kept  simple, 
neglecting important aspects such as business models, 
legal regulations or fine-grain grid behaviour. 

Smart homes are seen here as cyber-physical  systems 
that integrate and control electrical devices in order to 
provide  automated  services,  such  as  context-aware 
heating, entertainment, lighting and security. Individual 
devices termed ‘smart’ embed their own control logic 
to  offer  some service.  For  instance,  a  thermostat  can 
turn itself up when detecting the home owner’s pres-
ence. 

A micro grid is a local, low-tension electrical network. 
For simplicity, this paper considers a residential district 
organised as a tree, rooted at the district aggregator; the 
leaves are the end-user appliances – producers (e.g. sol-
ar  panels),  consumers  (e.g.  electrical  heaters)  or  both 
(e.g.  batteries). The generic term  prosumer designates 
such endpoints; the associated term prosumption means 
either production or consumption. A residential tree is 
part of a city grid that is in turn part of the national grid 
(not considered here). A house grid is a sub-tree of the 
district  grid.  Its  prosumption is measured by a house 
meter and equal to the sum of prosumptions of all ap-
pliances in the house. Likewise, the district's prosump-
tion is the sum of all household prosumptions. 

The load of a grid is defined as the ratio between pro-
ductions and consumptions. It is said to be  high when 
consumptions  overshoot  productions,  hence  requiring 
consumption from the parent grid; low load denotes the 
opposite.  In  this  paper,  load  management  consists  in 
adjusting local productions and consumptions to mini-
mise the footprint on the parent grid. For simplicity, the 
paper will globally refer to the ‘micro smart grid’ im-
plicitly including the integrated smart houses.



2.2 Autonomic control requirements
Let  us  now  define  the  perimeter  of  the  smart  grid’s 
autonomic controller and identify its most important re-
quirements.  First,  the  controller  must  pursue  several 
goals, specified by different authorities. The electricity 
provider imposes load management goals for the grid. 
In the presented scenarios, these goals take the form of 
a  Goal  Power  (GP)  interval  –  [GP_low,  GP_high]  – 
within which the prosumption of a sub-grid should be 
maintained. The exact values will depend on business 
objectives at different grid scales and on the context. 
Home owners define different types of goals for their 
households.  These  may be  related  to  comfort  –  like 
maintaining a temperature (heaters) or a lighting ambi-
ance (lamps), or simply performing activities like wash-
ing (washing machine) or cooking (oven). They may be 
related to cost – like keeping the electricity bill under a 
threshold, or minimise consumption to reflect an ecolo-
gical attitude. Note that such goals can be in conflict. 

Hence, the autonomic controller must be able to either 
favour one goal over all others – like prioritising ener-
gy savings over appliance usage or conversely pursuing 
comfort at any cost; or target a compromise among all 
goals – like only partially ensuring comfort if the grid 
is highly loaded. Such preferences are specified by ad-
ministrative authorities and may be context dependent 
(e.g. user presence or weather). Finally, some preferen-
ces can be overridden implicitly as users directly handle 
appliances (e.g. turning-up a heater or cooking).

The autonomic controller must pursue its goals by per-
forming  actions  on  manageable  resources,  including 
grid resources (not discussed here) and electrical appli-
ances. The presented use case focuses on two sample 
appliances  with  specific  profiles.  First,  heaters  trans-
form electric energy into heat; their power can be moni-
tored and set  via specific  touchpoints.  Second,  lamps 
transform electric energy into light; their light intensity 
can be adjusted via specific  touchpoints  that measure 
and set their consumption. While lamps do not usually 
constitute significant consumers, they are used here to 
model diverse equipments with similar profiles, such as 
microwave ovens or vacuum cleaners. Finally, privacy 
concerns impose that house appliances cannot be con-
trolled from outside the house within which they reside.

In addition to meeting the goals, the autonomic control-
ler must scale to large numbers of highly-distributed re-
sources (e.g. appliances). Also, the controller must ad-
apt to changes in goal specifications (e.g. power inter-
vals), priorities (e.g. comfort vs. savings) and execution 
context (e.g. weather). Finally, it must handle ‘smart’ or 
standard appliances being plugged-in or out. 

3. Conceptual Model

3.1 Goal types and specifications
Goals represent the very purpose of autonomic systems. 
Generally, they define a system’s viability zone, within 
which its state must be included at any one time [7][13]
[16]. A system’s state is defined via a set of variables 
whose values can predict its behaviour in the near fu-
ture  [9] (e.g.  a  heater’s  power  setting  predicts  the 
amount of heat it will produce).  A system’s state can 
also represent its end goal (e.g. a targeted temperature). 
Goal  definitions  are  intimately  related  to  the  way in 
which  they can be evaluated  – typically via observa-
tions on system state variables.  Goals may be declarati-
ve or procedural  [17]. Declarative goals indicate  what 
should be achieved rather than  how. They are usually 
defined  as  constraints  on  system variables  delimiting 
the viability zone, and can be automatically evaluated 
by calculating a utility function over the system state. 
Procedural goals indicate (via high-level policies)  how 
the system should behave in various situations. This pa-
per focuses on declarative goals and considers that pro-
cedural goal definitions can be induced from these. 

A goal definition can include three types of elements – 
G (V, S, T), where V defines the viability zone, S the 
resources  to which it  applies,  and T the periods over 
which it applies. The viability constraints (V) are com-
pulsory and typically accompanied by a utility function 
for evaluation purposes. In the smart home example, a 
goal can define a viability interval for the power con-
sumption. The Scope element (S) separates the viability 
definition from the resource domain to which it is ap-
plied  (and  evaluated).  It  is  defined  via  domain  con-
straints that identify,  in a declarative way,  the system 
resources  targeted  at  any one time. In  cyber-physical 
systems,  such  as  IoT,  Scopes  can  represent  physical 
areas in Euclidian space; resources located in that area 
belong to  the  Scope.  For  instance,  a  goal  defining  a 
temperature interval  can be applied to the scope of a 
house or only of one room. It will be evaluated using 
thermometers  located  across  the house  or  within that 
room, respectively. In systems where physical space is 
less relevant Scopes can define other types of resource 
sets  –  e.g.  a  network  domain  in  a  computer  cluster. 
Scopes are particularly relevant to open systems, where 
resources  can  change  dynamically  and  unpredictably. 
For  example,  a  power  interval  can  be  defined  for  a 
house, without explicitly identifying all its appliances. 
Finally, the Time element (T) separates a goal’s viabili-
ty constraints and scope from the periods over which 
they take effect. For simplicity, this element is no fur-
ther developed in the paper; goals implicitly start when 
received and end when cancelled or overwritten. 



3.2 Goal achievement and evaluation
The only means for an autonomic system to attain its 
goal(s) is via actions it can perform on manageable re-
sources  [Fig.  1].  Namely,  an  autonomic  controller 
should act so as to influence the variables of resources 
within the goal’s  scope (SG),  so as  to  maintain them 
within the goal’s  viability zone (V) (e.g.  to pursue a 
temperature  goal  in  a  home,  a  controller  acts  on  the 
heaters available in that home). It can be noted here that 
the set of resources on which the controller acts – the 
action resources – is not necessarily equal to the set of 
resources in the goal’s scope – the goal resources. The 
only constraints are that the controller should be able to 
monitor goal resources for evaluating its goal; and that 
the action resources should have a controllable influen-
ce on the state of goal resources (e.g. for a temperature 
goal in one room, the controller may act upon heaters 
within  that  room as  well  as  within  the  neighbouring 
rooms). A controller’s action resources for pursuing a 
goal constitute its Action Scope (SA). The set of resour-
ces whose state they can influence is referred to as In-
fluence Scope (SI). Finally, the controller may monitor 
resources it cannot control –  context resources from a 
Context Scope – e.g. outdoor thermometers. 

This approach clearly separates a goal’s definition from 
the controller’s means to pursue it. This is vital for ad-
apting a controller’s strategy to changes in its goals, en-
vironment and internal resources. It can also intervene 
in tackling multi-goal conflicts, as discussed later. This 
conceptual setting allows formulating clearly the prob-
lem that an autonomic controller must solve – i.e. how 
to attain its goal(s). It consists in finding a strategy, or 
mapping  function,  which  can transform  goals  into  
concrete actions; the solution will be  sensitive to the 
external  context  and  internal  system state.  This view 
generalises  the notion  of goal  to represent  a  higher-
level declarative action (intentional) that must be even-
tually translated into concrete actions (A), executed via 
resource effectors (imperative) [7]. 

Figure 1: Goal projection and evaluation.

3.3 Goal translation and division
This subsection identifies the main factors behind the 
difficulty of  mapping goals  into concrete actions and 
indicates  the  structural  and  behavioural  concepts  that 
can help analyse and address them.  One factor stems 

from an increasing ‘distance’ – or difference in the ab-
straction levels – between the goal’s viability specifica-
tion (V) and the concrete actions (A) – e.g. in the smart 
house, a controller must map a ‘comfort’ goal into con-
crete power configurations on heaters. A second factor 
represents  a  typical  control  problem,  involving  com-
plicated decision-making capabilities that rely on par-
tial knowledge, react to fluctuating inputs, avoid oscil-
lations and optimise results.  A third factor intervenes 
as controllers must adapt to change – e.g. integrate plug 
and  play  resources  and  change  strategies  to  achieve 
evolving goals in a variable environment. The fourth 
factor stems  from  the  scale  of  goal  scopes  (SG).  A 
large-scale  SG often  implies a  comparably large-scale 
SA which is difficult to control,  especially in an open 
context.  This difficulty increases  when plug and play 
resources  are  heterogeneous  and  belong  to  different 
legal authorities.

 ‘Classical’ Software Engineering (SE) techniques can 
be applied to help address these factors.  Layering can 
structure controllers along three distinctive axes. First, 
abstraction layers can progressively translate goals into 
concrete actions (first factor). Each layer maps higher-
level goals (or actions) from the layer above into lower-
level goals (or actions) for the layer below [Fig. 1]; this 
results in a translation hierarchy – e.g. a ‘comfort’ goal 
is  translated  into  an  intermediary  ‘temperature’  goal 
and  then into a  concrete  ‘power’  configuration.  Goal 
evaluation  follows  the  inverse  path  – monitored  data 
from SG resources is translated into administrative do-
main concepts.  Second,  control  layers can add meta-
control  abilities to base-level  functions,  thus enabling 
controllers  to  self-adapt  (third  factor)  –  e.g.  when  a 
smart house’s goal changes from ‘comfort’ to ‘saving’ 
mode a meta-control layer adapts the base control beha-
viour. Third,  orchestration layers can be added on top 
of otherwise decentralised control elements (discussed 
below) to form an integration control hierarchy. As or-
chestration and abstract layers are often superposed the 
terms are at times interchanged in the paper.

Encapsulation  and  modularisation  techniques  can 
complement layering to address a controller’s complex-
ity and adaptability concerns (second and third factors). 
They enable the separation of concerns in the control-
ler’s logic, facilitating the reuse and integration of sim-
pler  control  elements (CEs) into complicated  control-
lers. This is the equivalent of splitting the controller’s 
mapping  function  into  complementary  parts.  Adapta-
tion can be achieved by replacing or reintegrating these 
parts. Domain-specific algorithms are necessary for im-
plementing CEs and are outside the paper’s focus. This 
technique can also be applied to split the goal’s scope 



(fourth factor).  Here,  a goal  (G) is split  into comple-
mentary goals (Gi) that define the same type of viability 
constraints (V) over smaller scopes (SGi). Each Gi is as-
signed to a different control element CE i – e.g., a com-
fort goal for a house is split into comfort goals for indi-
vidual smart devices; or, the power goal over a district 
grid  is  split  into  power  goals  for  different  houses  – 
here, the goal value for the district power constraint is 
also split into smaller values for each house grid. This 
approach can also address  the multi-authority issue – 
e.g. district controllers (owned by a provider) split their 
goals  among  house  controllers  (owned  by  private 
parties).  It also intervenes in goal translation to address 
resource heterogeneity – e.g. comfort is converted into 
temperature for thermostats, and into light intensity for 
lamps.  Loose-coupling and dynamic binding enable 
runtime integration of CEs into adaptable controllers. 

From a behavioural perspective, most CEs in the afore-
mentioned structures act only in response to incoming 
data,  like  monitoring,  analysis  or  action,  from  re-
sources,  other CEs or administrators.  In  an integrated 
system, CEs trigger each others’ executions generating 
a  control flow through the system [Fig. 2]. It can pass 
through CEs within a layer, like the MAPE elements of 
a control  loop; as well as between layers,  like a base 
control  loop  triggering  a meta-control  loop or  an or-
chestrator. This is an important concept and plays a key 
role in identifying and resolving conflicts. When a con-
troller  pursues  a  goal,  we  say  that  its  control  flow 
serves the goal or carries the ensued action(s). 

3.4 Multi-goals, conflicts and resolution
Most autonomic systems will have to follow multiple 
goals, given by one or several authorities. In one case, 
multiple authorities issue goals with the same type of 
viability  constraints  (e.g.  range  of  power  values)  but 
with different constraint values (e.g. [1 kW, 2 kW] and 
[1.5 kW, 3 kW]). In another case, one authority issues 
goals with different constraint types (e.g.  comfort and 
power savings). The two cases can be combined. 

Each goal can be addressed individually as discussed 
before. The solutions can then be combined to obtain 
multi-goal systems. The main additional problem inter-
venes  when  the  system’s  goals  are  in  conflict.  This 
concept must be defined before addressing the problem. 
At the lowest level, a conflict occurs when concrete ac-
tions attempt to change a resource’s variables to incom-
patible values – e.g. one action turns a heater’s power 
up  and  another  one  down.  In  most  cases,  conflicts 
causes  can  be  traced  through  the  system  to  various 
sources. Source causes can stem from conflicting goals, 
conflicting controller  strategies,  or both of the above. 

Goals  are  conflicting  when  they  define  contradictory 
viability constraints over overlapping goal scopes (ex-
emplified  above).  Control  strategies  are  conflicting 
when they carry contradictory actions through overlap-
ping influence scopes (SI). Hence, conflicts  may occur 
when goals can cause contradictory actions on overlap-
ping SIs, the intersection area being referred to as Con-
flict Zone [Fig. 2]. Concretely, conflicts do occur when 
control flows that service contradictory goals (or carry 
contradictory  actions)  pass  through  a  conflict  zone 
(within a certain period, which is not discussed here). 
To avoid such behaviour, conflict zones must be identi-
fied and special-purpose mechanisms placed in the CEs 
within  those  zones.  These  include  conflict-resolution 
design  patterns  [4] or  agent-like  CEs  that  can  com-
promise among goals (subsection 5.1). Several of these 
can  be  placed  along  conflicting  control  flows  to  im-
prove the robustness of the resolution process [Fig. 2].

Figure 2: Conflicts and resolution.

4. Architectural Model

4.1 Types of layers and control elements
To remain generic, the reference model proposed here 
consists in a logical  architecture,  which relies on and 
refines the Autonomic Computing Blueprint [7]. It pro-
motes an approach based on the integration of control  
elements (CEs) of various types. This can be performed 
statically or dynamically, to develop and then adapt the 
system. Hence, an autonomic system consists of mana-
ged resources, which can be acted upon and monitored; 
and an autonomic controller,  which receives and pur-
sues goals.

An autonomic controller can be designed based on the 
abstract and concrete elements in the conceptual model. 
It can be recursively split into various combinations of 
abstract, orchestration and control layers, each one im-
plemented  via  concrete  CEs that  pursue  partial  goals 
over complementary scopes.  Concretely, CEs can rep-
resent: i) control tasks – providing control-related func-
tions (e.g. monitoring, decision, execution, knowledge 
management, other atomic functions or combinations of 
these  [5]; ii)  integration tasks – providing integration-
specific functions (e.g. conflict resolution [4]); and iii) 
control  composites –  consisting  of  flexible  composi-
tions of control tasks and (optionally) integration tasks, 
for  providing  more  advanced  control  structures  and 



functions, such as single or integrated feedback loops. 
Control composites can or not be  encapsulated. When 
encapsulated,  they  allow  building  fractal-like  struc-
tures,  viewed from the outside as a single well-integ-
rated CE [Fig. 3] – hence identical to a control task. 

From a behavioural perspective, CEs may be:  reactive 
to  external  stimuli;  reactive  with  additional  state,  or 
knowledge;  self-adaptive to  changes;  or  agent1-like 
managing and negotiating goals given by other entities. 
To  achieve  such  incremental  capacities,  the  model 
defines three types of control layers, where any CE may 
include one or several of these layers. The base control  
layer  monitors and acts on managed resources follow-
ing  a  pre-selected  strategy;  it  enables  reactive  beha-
viour. The meta-control or adaptation layer ensures the 
base layer’s adaptation to change, by altering or fine-
tuning its strategy [13][14]; it enables self-adaptive be-
haviours. Finally, the  goal management layer receives 
requests for pursuing goals and decides whether or not 
to  accept  them; it  enables  agent-like behaviours.  The 
decision may be binary or more nuanced, based on the 
requester’s  authority,  on  already  accepted  goals  and 
their conflicts with the new goals. Finally, abstract lay-
ers for goal translation will be application-specific.  

4.2 Requirements for integration
Integrating  CEs  must  rely  on  standardised  interfaces 
and  protocols.  While the  details  of  these  are  domain 
and  application-specific,  their  general  semantics  and 
purpose can be identified. This view is compliant with 
the Autonomic Computing Blueprint  [7], but extended 
from control loops to all CEs [Fig. 3]. Hence, from an 
external view, CEs are quite similar. They require mo-
nitoring and action interfaces for accessing managed re-
sources,  which  can  also  represent  lower-level  CEs. 
They also provide monitoring and action interfaces for 
allowing administrators and higher-level CEs to access 
them. These  interfaces  are  the  main enablers  for  CE 
layering and orchestration. Their semantics will differ 
depending on the CE type and conceptual layer – e.g., 
they will represent concrete touchpoints for monitoring 
and execution control tasks in a base control layer; and, 
goal specification and evaluation touchpoints for con-
trol loops in an adaptation layer. Interface implementa-
tions will also differ – reactive CEs simply execute in-
coming actions, while agent-like CEs may execute, ne-
gotiate, or ignore them. 

CEs may also provide and require functional interfaces 
for exchanges with other CEs [Fig. 3]. As before, these 

1  Software agent may be of these types [18], here we 
only use goal-oriented agents that can manage goals.

exchanges  are  application-specific,  but  their  general 
purpose will depend on the CE’s function – e.g. in the 
base control  layer,  they can enable  the integration of 
control tasks into feedback loops; in the self-adaptive 
layer, they can provide access to search and discovery 
services; for agent-like CEs, they can intervene in agent 
negotiation and self-organisation. Depending on its use, 
a CE may or may not provide all of these interfaces.

Figure 3: Control element interfaces.

4.3 Integration and adaptation
Integrating CEs into multi-goal, distributed and adapt-
able autonomic controllers requires handling problems 
of communication, coordination and control. The archi-
tectural  model  identifies  several  integration-specific 
CEs  to  help  with  such  issues.  Essential  elements  in-
clude  distributed  communication  infrastructures,  dis-
covery and repository services. Many such artefacts are 
available from related research domains and no further 
treated here. Conversely,  coordination and control are 
key concerns,  which  are especially  challenging when 
CEs and managed resources must be integrated dynam-
ically. Two complementary techniques can be adopted 
here. The first one relies on facilities for runtime evalu-
ation, reporting and autonomic adaptation. This aspect 
was included in the conceptual model and will be fur-
ther developed in future work. The second one relies on 
imposing architectural  templates  or  organisations –  a 
term borrowed from the agent community (e.g.  [8][18]
[19]). An organisation defines an invariant system core, 
or template, which can be ‘filled-in’ dynamically with 
concrete resources depending on their availability and 
state. Imposing an organisation can ensure, to a certain 
extent, structural and behavioural properties for the res-
ulting adaptive system [3]. 

An organisation consists of several roles that interact in 
a well-defined way. A role is defined via well-specified 
set of capabilities (e.g. a ‘prosumer’ role in a smart grid 
organisation). The role can be assigned to any resource 
that provides these capabilities (e.g. a heater takes the 
prosumer role), statically or during runtime. Autonomic 
controllers are designed based on one or several com-
posed organisations, which are in turn defined based on 
artefacts in the reference model. The exemplified micro 
smart grid shows how predesigned organisations facilit-
ate system development and enable adaptation. A cata-
logue  of  reusable  organisations  can  be  progressively 
developed  for  autonomic  systems.  A  core  set  was 
presented  in  [4] as  integration  design  patterns.  These 
include centralised orchestrators, decentralised coordin-



ation via functions embedded in control elements, hier-
archical  multi-layer  organisations,  and aggregator  and 
filter interceptors for integrated control flows. 

5. Illustration via the micro smart grid

5.1 Application design and implementation
Like  most  SE contributions,  evaluating  the presented 
reference  model  cannot  rely  on  formal  proofs  and 
would require too vast experimental  resources to rely 
on a meaningful empirical approach – e.g. [11]. Hence, 
for now, it can only be validated through rigorous argu-
mentation  and  relevant  exemplification,  which  is  the 
aim of this section. [Fig. 4] depicts the overall design of 
the  exemplified  micro  smart  grid.  In  short,  we  first 
identified  the  authorities  involved  and  the  types  of 
goals they could specify. For each goal, we spotted the 
difficulty factors and addressed them using model arte-
facts.  This  resulted  in  well-defined  organisations, 
whose roles were then assigned to CEs with pre-coded 
behaviours;  these  could  also  be  discovered  and 
plugged-in at runtime.  To address all goals at once, ini-
tial  organisations  were  combined  and  extended  with 
conflict-resolution  mechanisms  placed  in  the  conflict 
zones.  The  overall  design  takes  the  shape  of  a  hier-
archy, where abstract, control and orchestration layers 
overlap at each node (CE). CEs pursue different goals, 
sometimes conflicting, and operate at different scales. 
Let us look at some details.

An electricity provider defines a power goal over the 
district grid – ([GP_d_low, GP_d_high], district). The 
district controller (CE_d) has a large SA,  including all 
appliances  – here,  heaters  and  lamps – in  all  district 
houses, with different owners. Hence the district power 
goal is  split amongst goals with progressively smaller 
scopes; each one is assigned to a new CE – e.g. CE_h1 
and CE_h2 for house scopes; CE_r1, CE_r2, CE_l for 
device  scopes.  CEs  with  larger  scopes  orchestrate 
those with smaller scopes, resulting in a hierarchical ar-
chitecture.  Next,  abstraction  layers are  superposed 
over the CE hierarchy to translate district power goals 
(declarative)  for  the  CE_d  into  orders  (procedural 
goals) for house and device CEs. This leads to an  or-
ganisation that includes two roles: load managers that 
pursue  power  goals  by  orchestrating  prosumers.  In 
[Fig.  4] CE_d plays a load manager role,  device CEs 
prosumer roles  and CE_h both roles  – prosumer (for 
CE_d) and manager (for device CEs). When a manager 
detects  that  measures  approach  the  power  interval’s 
high limit it sends a reduce_load order to its prosumers; 
for the lower limit it sends a rise_load order; when well 
in between the limits it sends an any_load order to can-
cel the previous ones. To avoid oscillations, these or-

ders are sent progressively, in random order, and the ef-
fects observed before new orders are sent. Finally,  an 
adaptation control layer can be added to manager CEs 
to discover and integrate new prosumers (not shown).  

Figure 4:  Control design for the micro smart grid.

Figure 5: Design detail for the house control.

Home owners define goals for their house. These can 
prioritise either a ‘comfort’ or ‘saving’  mode. As be-
fore, this leads to a hierarchical organisation that splits 
the  house  goal  (e.g.  G(‘comfort’,  h1)  –  declarative) 
among device goals  (e.g.  G(‘comfort’,  heater1)  –  de-
clarative). For device CEs, mode goals must be trans-
lated  into  concrete  actions  on  devices.  Hence,  these 
CEs are split into several abstract layers – e.g. for the 
CE_r1 heater in [Fig. 5] modes are translated to temper-
atures  (predefined)  and  then to  power  settings  (via a 
PID controller); an adaptation control layer could also 
be added to the PID abstract layer for reconfiguration 
purposes (not shown). Finally,  home owners can also 
set  goals  directly  on  devices,  at  different  abstraction 
layers – e.g. ‘saving’ mode or temperature on heater1. 

To obtain a controller that pursues all presented goals 
simultaneously, the corresponding organisations are su-
perposed onto one hierarchy.  Here,  CEs at each level 



combine the architectural layers of all previous organ-
isations.  Let’s see some of the conflicts that can occur. 
One  conflict  is  caused  by  district  power  goals  and 
house mode goals intersecting over the house scope – 
the conflict zone includes all CEs and resources in the 
home, as they belong to the SI of both goals. Another 
one can occur between mode goals  set  for  the entire 
house and directly on each device – the conflict zone 
includes  the  concerned  device.  Both  conflicts  are 
handled by adding goal management layers to CEs in 
the conflict zones [Fig. 5]. This layer receives conflict-
ing goals as inputs and provides a coherent goal as out-
put for the control  layer  below – e.g.  power for  load 
managers  in  house  CEs and  temperature  for  PIDs  in 
heater CEs. It also represents an abstraction layer as it 
translates declarative and procedural  goals (mode and 
orders)  into a declarative  goal  (power or  temperature 
interval). A goal manager gives priority to mode goals 
–  if  ‘comfort’,  it  ignores  orders  from load  managers 
above; if ‘saving’, it modifies the interval for the man-
ager below depending on the orders received ([Fig. 6] 
and [Fig. 7]). In addition, device goal managers priorit-
ise goals set directly on the device over those derived 
from the house mode.

5.2 Scenarios, results and discussion
The scenarios depict the micro smart grid when the out-
side  temperature  is  dropping,  heaters  increase  con-
sumption thus rising the district load  [26]. They focus 
on the behaviour of two district houses – h1 and h2. H1 
is set to a ‘comfort’ mode – most heaters ignore load-
related orders and sustain a 23°C temperature;  only a 
few that  were  directly  set  in  ‘saving’  mode respond. 
Hence,  h1’s  power  target  is  crossed  [Fig.  7-a].  This 
conforms to the user’s ‘comfort’ goal and will impact 
the bill. The district manager detects a consumption in-
crease and starts sending reduce_load orders to house 
prosumers. Since in ‘comfort’ mode, h1’s CE ignores 
them. H2 is initially set to ‘saving’ and reacts by lower-
ing  its  power  interval  [Fig.  7-b];  it  then  sends 
reduce_load orders to device prosumers to fit the new 
range. Heaters react by lowering their temperatures to 
20°C which  therefore  lowers  their  consumptions  and 
helps the district manager. To illustrate a dynamic goal 
change, let’s assume that h2’s owners switch its mode 
to ‘comfort’, to accommodate an unexpected guest. H2 
self-adapts – its prosumers ignore orders and consume 
more [Fig. 7-b]. 

The scenarios were run on a smart grid simulator that 
models physical entities, like houses, rooms, grid, heat-
ers, lamps or solar panels; with related behaviours and 
attributes  such  as  heat  transfer,  temperature  and 
prosumption (in simulation time [s]). It  is based on a 

service-oriented component technology – iPOJO/OSGi 
– and Akka middleware. These enable devices and CEs 
to be deployed, reconfigured and removed at run-time. 
A miniature house model was also built to ensure real-
istic behaviour. For limited space reasons, the presented 
results (based on the simulation) were selected for illus-
trative  purposes;  a  web  version  of  the  simulation  is 
available online for further explorations2. 

Figure 6: Management of a flexible heater.

Figure 7: Power management in h1 (a) and h2 (b).

6. Related Work

This paper’s contribution intersects several interrelated 
works, from various domains, from which we can only 
cite  a  few here.  Separating  goals  from the  means  of 
achieving them has been proposed in autonomic com-
puting  [17],  system  engineering  [20] and  software 
agents  [18].  In  [17],  management  objectives  can  be 
defined as procedural policies, declarative goals or util-
ity functions.  In  [20], ‘posed problems’ are separated 
from the ‘resources’ that can solve them, hence delay-
ing resource selection until runtime. In the AI domain, 
‘intelligent’ agents modify the environment to achieve 
declarative  goals  [18].  They  can  adapt  internal 
strategies when faced with unpredictable situations. In 
cybernetics, Ashby proposed an ‘ultra-stable’ architec-

2 try the simulation online at 
http://perso.telecom-paristech.fr/~sfrey/



ture that relies on two superposed control loops for ad-
apting the system and its control strategy [13]. 

The presented reference model is consistent with these 
approaches – it generalises goal definitions to include 
scope and time (also identified in [10]), separates goals 
from control logic and introduces meta-control layers to 
self-adapt  this  logic  and  negotiate  goals.  Similar 
layered architectures have been proposed in various do-
mains,  including Brook’s  subsumption architecture  in 
robotics  [12] or Kramer and Magee’s architecture  [14] 
for autonomic systems. We drew inspiration from these 
proposals  and  identified  the different  natures  of  con-
cerns that lead to system layering. The model thus pro-
poses abstract, control and orchestration layers, which 
address  orthogonal  concerns and can be combined in 
recursive ways. The organisation paradigm is common 
in the Multi-Agent Systems domain [8][19] and was ad-
opted in the model to enable  internal adaptation and in-
tegration of plug and play resources while conserving 
important invariants. We are exploring this idea further 
in a parallel project [3]. In [4] we have presented an ini-
tial catalogue of organisations focused on conflict res-
olution. Splitting controllers into CEs of various types – 
such  as  control  tasks  and  feedback  loops  – relies  on 
previous projects  [5][6]. The feedback loop appears as 
a first-class entity in all autonomic systems [15][7]. 

The presented reference model is complementary with 
many  contributions  that  address  particular  issues  of 
autonomic computing and IoT. These include numerous 
application-specific solutions that propose ad-hoc ways 
of  constructing  or  integrating  control-loops  –  e.g. 
monolithic control in DigiHome [21]; hierarchical man-
agers  in  fANFARE  [22],  AutoHome  [6],  or  using  a 
single  coordination  manager  [23];  or  agent-oriented 
managers [11]. These fit the reference model represent-
ing particular instantiations. Another category of com-
plementary contributions focus on specific communica-
tion protocols  and  integration  middleware  for  hetero-
geneous plug and play devices, like DigiHome [21] or 
RoSe  [22] home  automation  platforms.  Finally,  [24] 
presents  a  generic  integration  model  focused  on  cat-
egorising control loops based on their reciprocal inter-
ference (via shared knowledge) and proposing coordin-
ation and synchronisation protocols to integrate them. 

Self-management requirements for the micro smart grid 
have been identified in several works [25][27][28][29]. 
Notably,  [25] proposes a distributed load management 
algorithm, where “colour” statuses  solve management 
conflicts between load balancers and appliances. These 
fit  the reference model and can be adopted to imple-
ment corresponding CE layers. The smart grid domain 

was targeted here as a rich use case for illustrating the 
model and highlighting its main contributions.

7. Conclusions and Future Work

This paper proposed a reference model to help analyse 
and design multi-goal, multi-scale, adaptive autonomic 
control systems operating in distributed open environ-
ments, such as the IoT. It relies on the assumption that 
autonomic systems of this kind will be built by integrat-
ing control elements (CEs) of diverse types. Taking a 
SE-oriented approach, it  aims to identify the reusable 
artefacts that can help instantiate this type of solution.

The model comprises two complementary parts – con-
ceptual  and  architectural.  The conceptual  model  con-
siders  goals as key elements that should be separated 
from  the  control  logic  necessary  to  pursue  them.  It 
provides a goal  definition that can be translated, split 
and propagated across various CE types in the system, 
down to concrete actions on resources. The main diffi-
culty factors are identified – including conceptual ab-
straction  gaps,  logistical  complexity,  adaptability  and 
scalability issues – and suitable SE techniques identi-
fied for addressing them – including orthogonal types 
of layering and flexible modular architectures. The con-
ceptual  model  also  identifies  conflicts as  stand-alone 
elements  that  must  be  clearly  defined,  identified  and 
addressed. The architectural  model relies on this con-
ceptual base to define more concrete artefacts for sys-
tem design. It includes several types of CEs – control 
tasks, integration tasks and control composites – featur-
ing different behaviours and hence requiring different 
facilities – base, adaptive and agent-like functions. To 
integrate artefacts into flexible systems while ensuring 
core properties the model adopts an organisation-orien-
ted approach inspired from the multi-agents. It indicates 
how this can be extended with reusable artefacts specif-
ic to conflict-resolution to handle multi-goal scenarios.

To  illustrate  its  applicability  and  benefits  the  paper 
showed how a sample micro smart grid was designed 
and implemented based on the reference model. Several 
runtime scenarios were selected to show how to define 
goals  in  business-specific  terms,  translate  and  split 
them among several abstraction levels, deal with mul-
tiple  authorities  and  heterogeneous  resources,  handle 
multi-goal conflicts, adapt to dynamic context changes 
and goal reconfigurations, and integrate new resources. 
The paper did not address issues related to security con-
cerns  and  the  possible  incompatibility  of  integrated 
CEs. System robustness and scalability were considered 
in the model but not yet tested or shown here. 



Future work will  concentrate on analysing autonomic 
systems in other domains to further test the model’s ap-
plicability and extend it if necessary. This will include 
time-related  concerns,  which  are  critical  to  decision 
making,  decentralised coordination and system stabil-
ity. The authors’ intent is to bring forward the under-
standing  of  autonomic  systems  operating  in  the  IoT 
context and the associated support for developing them.
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