
Towards a reference model for multi-goal, highly-distributed and dynamic
autonomic systems

1Sylvain Frey, 2Ada Diaconescu, 1David Menga and 2Isabelle Demeure
1ICAME department, EDF R&D, Clamart, France; {first name}.{last name}@edf.fr

2Télécom ParisTech, CNRS LTCI, Paris, France; {first name}.{last name}@telecom-paristech.fr

Abstract

Autonomic control is vital to the success of large-scale distributed open IoT systems, which must simultaneously
cater for the interests of several parties. However, developing and maintaining autonomic controllers is highly diffi-
cult and costly. To illustrate this problem, this paper considers a system that could be deployed in the future, integ -
rating smart homes within a micro smart grid. The paper addresses this problem from a software engineering per -
spective, building on the authors’ experience with devising autonomic systems and including recent work on integ-
ration design patterns. The contribution focuses on a reference model for multi-goal, adaptable and open autonomic
systems, exemplified via the development of a concrete autonomic application for the micro smart grid. Our long -
term goal is to progressively identify and develop reusable artefacts, such as paradigms, models and frameworks for
helping the development of autonomic applications, which are vital for reaching the full potential of IoT systems.

Keywords: autonomic control, software engineering, model, multi-goal autonomic systems, control loop integra-
tion, open adaptable and distributed applications, agent organisations, smart home, micro smart grid.

1. Introduction

The purpose of any computing system is to reach objec-
tives specified by an external authority. When multiple
authorities can access the system, like in the IoT (Inter-
net of Things) context, system goals may be conflict-
ing, while targeting overlapping system parts. More-
over, such systems must often scale to large numbers of
highly-distributed resources and be adaptable to chan-
ges in their goals, execution context and constituent re-
sources (the systems are open). Autonomic or self-*
capabilities become key to the success of such systems.

This paper illustrates this challenge via a multi-goal,
adaptable and open autonomic system that integrates
several smart houses into a micro smart grid. To cover
both the Autonomic Computing (AC) and IoT domains
involved in this example, the paper employs the generic
term autonomic control [1] to designate the system lo-
gic that manages available resources for attaining goals.
The only means for an autonomic controller to pursue
its objectives is via actions it can perform on such man-
ageable resources. To select actions the controller can
rely on decision strategies, available knowledge and
runtime information from the environment and the sys-
tem state. The key challenge lies in developing the
controller logic that can successfully pursue system
goals while ensuring essential system characteristics –
scalability, robustness, adaptability and openness.

We approach this challenge from a Software Engineer-
ing (SE) perspective. Our aim is to identify, specify and
develop reusable artefacts for analysing and designing
autonomic control systems with the aforementioned
properties. The presented work relies on our experience
with building autonomic frameworks and systems [2]
[3][4][5][6]. The long-term aim is to build a compre-
hensive reference model for autonomic systems.

The proposed reference model is constructed on the as-
sumption that the development and adaptation of any
realistic autonomic system will rely on the integration
of managed resources and control elements of different
types; integration can occur statically or dynamically.
An important challenge lies in identifying and bringing
together the necessary types of abstract entities and
concrete control elements that can be used for system
design and integration. Abstract artefacts can include
architectural styles, design patterns and layering tech-
niques over several axes of abstraction. Control ele-
ments include relatively straightforward control tasks –
such as monitoring, decision-making, execution or
knowledge-management; entire control loops; or com-
binations of the above [5][6][7]. They can be function-
ally organised based on well-defined abstract entities,
like those indicated above, and interconnected via hard-
coded or loosely-coupled bindings. The overall integra-
tion process can be controlled in a fully centralised, de-
centralised or hierarchical manner [3][4][5][6][7][8].

Another important challenge lies in coordinating con-
trol elements so as to obtain coherent controllers that
can pursue several goals, adapt dynamically and sup-
port highly-distributed, plug and play resources. Of ma-
jor interest here is the detection and resolution of con-
flicts that may occur when integrating elements with
contradicting goals [4] or control strategies [5]. The re-
ference model presented here focuses on addressing
these two major challenges. Other important concerns,
such as timing and synchronisation of integrated ac-
tions are part of ongoing research not covered here. The
authors do not claim the novelty of all artefacts in the
reference model. Indeed, most of these can be found in
related fields such as automatic control [9], collective
adaptive systems [10], multi-agents [8][11], robotics
[12], cybernetics [13] or autonomic systems [7][14]
[15]. These provide a rich repertoire of solutions that
address different parts of the overall challenge.

This paper’s contribution consists in identifying and
extending existing artefacts that can be employed for
designing autonomic control systems, and assimilating
them into a coherent reference model. Some key as-
pects of the proposed contribution include: rendering
explicit the conceptual elements included in goal defi-
nitions; defining the problem of building autonomic
controllers as a problem of mapping declarative actions
(goals) into concrete actions (on managed resources), in
a context-aware and extensible way; bringing together
existing SE techniques for splitting the mapping prob-
lem into recursively smaller elements and integrating
such elements into flexible overall solutions; defining
integration conflicts and ways of resolving them; apply-
ing architectural templates and agent organisation tech-
niques to ensure system coherence and runtime flexibi-
lity. This is illustrated by developing a multi-goal, ad-
aptable and open autonomic micro smart grid.

The ongoing aim is to help answer questions on: How
to develop scalable and adaptable feedback loops? How
to integrate multiple feedback loops so as to pursue
many goals at different scales? How to deal with sys-
tem dynamism and openness? Addressing these con-
cerns is vital for reaching the full potential of Auto-
nomic Computing and IoT paradigms. The proposed
contribution is relevant to both autonomic systems in
general – as it helps design multi-goal, highly-distribu-
ted and adaptive autonomic managers; and to IoT sys-
tems – as it shows how autonomic controllers built in
this way can control system resources to ensure requi-
red properties and functions.

Section 2 describes the sample micro smart grid appli-
cation, highlighting its requirements and design chal-

lenges. Sections 3 and 4 introduce the conceptual and
architectural aspects of the proposed model, respect-
ively, illustrating them via concrete design examples
from the micro smart grid. Section 5 relies on these ex-
amples to illustrate the complete design of the applica-
tion. Section 6 discusses related work and section 7
concludes the paper and indicates future research.

2. Smart Houses meet Micro Smart Grid

2.1 Overall system
In a near-future, it can be envisaged that smart homes
integrate with smart grids to form large-scale, highly-
distributed, dynamic and open IoT systems. This paper
considers this type of system as a relevant use case for
the problem addressed. For the sake of clarity and ex-
pressiveness, the system model is often kept simple,
neglecting important aspects such as business models,
legal regulations or fine-grain grid behaviour.

Smart homes are seen here as cyber-physical systems
that integrate and control electrical devices in order to
provide automated services, such as context-aware
heating, entertainment, lighting and security. Individual
devices termed ‘smart’ embed their own control logic
to offer some service. For instance, a thermostat can
turn itself up when detecting the home owner’s pres-
ence.

A micro grid is a local, low-tension electrical network.
For simplicity, this paper considers a residential district
organised as a tree, rooted at the district aggregator; the
leaves are the end-user appliances – producers (e.g. sol-
ar panels), consumers (e.g. electrical heaters) or both
(e.g. batteries). The generic term prosumer designates
such endpoints; the associated term prosumption means
either production or consumption. A residential tree is
part of a city grid that is in turn part of the national grid
(not considered here). A house grid is a sub-tree of the
district grid. Its prosumption is measured by a house
meter and equal to the sum of prosumptions of all ap-
pliances in the house. Likewise, the district's prosump-
tion is the sum of all household prosumptions.

The load of a grid is defined as the ratio between pro-
ductions and consumptions. It is said to be high when
consumptions overshoot productions, hence requiring
consumption from the parent grid; low load denotes the
opposite. In this paper, load management consists in
adjusting local productions and consumptions to mini-
mise the footprint on the parent grid. For simplicity, the
paper will globally refer to the ‘micro smart grid’ im-
plicitly including the integrated smart houses.

2.2 Autonomic control requirements
Let us now define the perimeter of the smart grid’s
autonomic controller and identify its most important re-
quirements. First, the controller must pursue several
goals, specified by different authorities. The electricity
provider imposes load management goals for the grid.
In the presented scenarios, these goals take the form of
a Goal Power (GP) interval – [GP_low, GP_high] –
within which the prosumption of a sub-grid should be
maintained. The exact values will depend on business
objectives at different grid scales and on the context.
Home owners define different types of goals for their
households. These may be related to comfort – like
maintaining a temperature (heaters) or a lighting ambi-
ance (lamps), or simply performing activities like wash-
ing (washing machine) or cooking (oven). They may be
related to cost – like keeping the electricity bill under a
threshold, or minimise consumption to reflect an ecolo-
gical attitude. Note that such goals can be in conflict.

Hence, the autonomic controller must be able to either
favour one goal over all others – like prioritising ener-
gy savings over appliance usage or conversely pursuing
comfort at any cost; or target a compromise among all
goals – like only partially ensuring comfort if the grid
is highly loaded. Such preferences are specified by ad-
ministrative authorities and may be context dependent
(e.g. user presence or weather). Finally, some preferen-
ces can be overridden implicitly as users directly handle
appliances (e.g. turning-up a heater or cooking).

The autonomic controller must pursue its goals by per-
forming actions on manageable resources, including
grid resources (not discussed here) and electrical appli-
ances. The presented use case focuses on two sample
appliances with specific profiles. First, heaters trans-
form electric energy into heat; their power can be moni-
tored and set via specific touchpoints. Second, lamps
transform electric energy into light; their light intensity
can be adjusted via specific touchpoints that measure
and set their consumption. While lamps do not usually
constitute significant consumers, they are used here to
model diverse equipments with similar profiles, such as
microwave ovens or vacuum cleaners. Finally, privacy
concerns impose that house appliances cannot be con-
trolled from outside the house within which they reside.

In addition to meeting the goals, the autonomic control-
ler must scale to large numbers of highly-distributed re-
sources (e.g. appliances). Also, the controller must ad-
apt to changes in goal specifications (e.g. power inter-
vals), priorities (e.g. comfort vs. savings) and execution
context (e.g. weather). Finally, it must handle ‘smart’ or
standard appliances being plugged-in or out.

3. Conceptual Model

3.1 Goal types and specifications
Goals represent the very purpose of autonomic systems.
Generally, they define a system’s viability zone, within
which its state must be included at any one time [7][13]
[16]. A system’s state is defined via a set of variables
whose values can predict its behaviour in the near fu-
ture [9] (e.g. a heater’s power setting predicts the
amount of heat it will produce). A system’s state can
also represent its end goal (e.g. a targeted temperature).
Goal definitions are intimately related to the way in
which they can be evaluated – typically via observa-
tions on system state variables. Goals may be declarati-
ve or procedural [17]. Declarative goals indicate what
should be achieved rather than how. They are usually
defined as constraints on system variables delimiting
the viability zone, and can be automatically evaluated
by calculating a utility function over the system state.
Procedural goals indicate (via high-level policies) how
the system should behave in various situations. This pa-
per focuses on declarative goals and considers that pro-
cedural goal definitions can be induced from these.

A goal definition can include three types of elements –
G (V, S, T), where V defines the viability zone, S the
resources to which it applies, and T the periods over
which it applies. The viability constraints (V) are com-
pulsory and typically accompanied by a utility function
for evaluation purposes. In the smart home example, a
goal can define a viability interval for the power con-
sumption. The Scope element (S) separates the viability
definition from the resource domain to which it is ap-
plied (and evaluated). It is defined via domain con-
straints that identify, in a declarative way, the system
resources targeted at any one time. In cyber-physical
systems, such as IoT, Scopes can represent physical
areas in Euclidian space; resources located in that area
belong to the Scope. For instance, a goal defining a
temperature interval can be applied to the scope of a
house or only of one room. It will be evaluated using
thermometers located across the house or within that
room, respectively. In systems where physical space is
less relevant Scopes can define other types of resource
sets – e.g. a network domain in a computer cluster.
Scopes are particularly relevant to open systems, where
resources can change dynamically and unpredictably.
For example, a power interval can be defined for a
house, without explicitly identifying all its appliances.
Finally, the Time element (T) separates a goal’s viabili-
ty constraints and scope from the periods over which
they take effect. For simplicity, this element is no fur-
ther developed in the paper; goals implicitly start when
received and end when cancelled or overwritten.

3.2 Goal achievement and evaluation
The only means for an autonomic system to attain its
goal(s) is via actions it can perform on manageable re-
sources [Fig. 1]. Namely, an autonomic controller
should act so as to influence the variables of resources
within the goal’s scope (SG), so as to maintain them
within the goal’s viability zone (V) (e.g. to pursue a
temperature goal in a home, a controller acts on the
heaters available in that home). It can be noted here that
the set of resources on which the controller acts – the
action resources – is not necessarily equal to the set of
resources in the goal’s scope – the goal resources. The
only constraints are that the controller should be able to
monitor goal resources for evaluating its goal; and that
the action resources should have a controllable influen-
ce on the state of goal resources (e.g. for a temperature
goal in one room, the controller may act upon heaters
within that room as well as within the neighbouring
rooms). A controller’s action resources for pursuing a
goal constitute its Action Scope (SA). The set of resour-
ces whose state they can influence is referred to as In-
fluence Scope (SI). Finally, the controller may monitor
resources it cannot control – context resources from a
Context Scope – e.g. outdoor thermometers.

This approach clearly separates a goal’s definition from
the controller’s means to pursue it. This is vital for ad-
apting a controller’s strategy to changes in its goals, en-
vironment and internal resources. It can also intervene
in tackling multi-goal conflicts, as discussed later. This
conceptual setting allows formulating clearly the prob-
lem that an autonomic controller must solve – i.e. how
to attain its goal(s). It consists in finding a strategy, or
mapping function, which can transform goals into
concrete actions; the solution will be sensitive to the
external context and internal system state. This view
generalises the notion of goal to represent a higher-
level declarative action (intentional) that must be even-
tually translated into concrete actions (A), executed via
resource effectors (imperative) [7].

Figure 1: Goal projection and evaluation.

3.3 Goal translation and division
This subsection identifies the main factors behind the
difficulty of mapping goals into concrete actions and
indicates the structural and behavioural concepts that
can help analyse and address them. One factor stems

from an increasing ‘distance’ – or difference in the ab-
straction levels – between the goal’s viability specifica-
tion (V) and the concrete actions (A) – e.g. in the smart
house, a controller must map a ‘comfort’ goal into con-
crete power configurations on heaters. A second factor
represents a typical control problem, involving com-
plicated decision-making capabilities that rely on par-
tial knowledge, react to fluctuating inputs, avoid oscil-
lations and optimise results. A third factor intervenes
as controllers must adapt to change – e.g. integrate plug
and play resources and change strategies to achieve
evolving goals in a variable environment. The fourth
factor stems from the scale of goal scopes (SG). A
large-scale SG often implies a comparably large-scale
SA which is difficult to control, especially in an open
context. This difficulty increases when plug and play
resources are heterogeneous and belong to different
legal authorities.

 ‘Classical’ Software Engineering (SE) techniques can
be applied to help address these factors. Layering can
structure controllers along three distinctive axes. First,
abstraction layers can progressively translate goals into
concrete actions (first factor). Each layer maps higher-
level goals (or actions) from the layer above into lower-
level goals (or actions) for the layer below [Fig. 1]; this
results in a translation hierarchy – e.g. a ‘comfort’ goal
is translated into an intermediary ‘temperature’ goal
and then into a concrete ‘power’ configuration. Goal
evaluation follows the inverse path – monitored data
from SG resources is translated into administrative do-
main concepts. Second, control layers can add meta-
control abilities to base-level functions, thus enabling
controllers to self-adapt (third factor) – e.g. when a
smart house’s goal changes from ‘comfort’ to ‘saving’
mode a meta-control layer adapts the base control beha-
viour. Third, orchestration layers can be added on top
of otherwise decentralised control elements (discussed
below) to form an integration control hierarchy. As or-
chestration and abstract layers are often superposed the
terms are at times interchanged in the paper.

Encapsulation and modularisation techniques can
complement layering to address a controller’s complex-
ity and adaptability concerns (second and third factors).
They enable the separation of concerns in the control-
ler’s logic, facilitating the reuse and integration of sim-
pler control elements (CEs) into complicated control-
lers. This is the equivalent of splitting the controller’s
mapping function into complementary parts. Adapta-
tion can be achieved by replacing or reintegrating these
parts. Domain-specific algorithms are necessary for im-
plementing CEs and are outside the paper’s focus. This
technique can also be applied to split the goal’s scope

(fourth factor). Here, a goal (G) is split into comple-
mentary goals (Gi) that define the same type of viability
constraints (V) over smaller scopes (SGi). Each Gi is as-
signed to a different control element CE i – e.g., a com-
fort goal for a house is split into comfort goals for indi-
vidual smart devices; or, the power goal over a district
grid is split into power goals for different houses –
here, the goal value for the district power constraint is
also split into smaller values for each house grid. This
approach can also address the multi-authority issue –
e.g. district controllers (owned by a provider) split their
goals among house controllers (owned by private
parties). It also intervenes in goal translation to address
resource heterogeneity – e.g. comfort is converted into
temperature for thermostats, and into light intensity for
lamps. Loose-coupling and dynamic binding enable
runtime integration of CEs into adaptable controllers.

From a behavioural perspective, most CEs in the afore-
mentioned structures act only in response to incoming
data, like monitoring, analysis or action, from re-
sources, other CEs or administrators. In an integrated
system, CEs trigger each others’ executions generating
a control flow through the system [Fig. 2]. It can pass
through CEs within a layer, like the MAPE elements of
a control loop; as well as between layers, like a base
control loop triggering a meta-control loop or an or-
chestrator. This is an important concept and plays a key
role in identifying and resolving conflicts. When a con-
troller pursues a goal, we say that its control flow
serves the goal or carries the ensued action(s).

3.4 Multi-goals, conflicts and resolution
Most autonomic systems will have to follow multiple
goals, given by one or several authorities. In one case,
multiple authorities issue goals with the same type of
viability constraints (e.g. range of power values) but
with different constraint values (e.g. [1 kW, 2 kW] and
[1.5 kW, 3 kW]). In another case, one authority issues
goals with different constraint types (e.g. comfort and
power savings). The two cases can be combined.

Each goal can be addressed individually as discussed
before. The solutions can then be combined to obtain
multi-goal systems. The main additional problem inter-
venes when the system’s goals are in conflict. This
concept must be defined before addressing the problem.
At the lowest level, a conflict occurs when concrete ac-
tions attempt to change a resource’s variables to incom-
patible values – e.g. one action turns a heater’s power
up and another one down. In most cases, conflicts
causes can be traced through the system to various
sources. Source causes can stem from conflicting goals,
conflicting controller strategies, or both of the above.

Goals are conflicting when they define contradictory
viability constraints over overlapping goal scopes (ex-
emplified above). Control strategies are conflicting
when they carry contradictory actions through overlap-
ping influence scopes (SI). Hence, conflicts may occur
when goals can cause contradictory actions on overlap-
ping SIs, the intersection area being referred to as Con-
flict Zone [Fig. 2]. Concretely, conflicts do occur when
control flows that service contradictory goals (or carry
contradictory actions) pass through a conflict zone
(within a certain period, which is not discussed here).
To avoid such behaviour, conflict zones must be identi-
fied and special-purpose mechanisms placed in the CEs
within those zones. These include conflict-resolution
design patterns [4] or agent-like CEs that can com-
promise among goals (subsection 5.1). Several of these
can be placed along conflicting control flows to im-
prove the robustness of the resolution process [Fig. 2].

Figure 2: Conflicts and resolution.

4. Architectural Model

4.1 Types of layers and control elements
To remain generic, the reference model proposed here
consists in a logical architecture, which relies on and
refines the Autonomic Computing Blueprint [7]. It pro-
motes an approach based on the integration of control
elements (CEs) of various types. This can be performed
statically or dynamically, to develop and then adapt the
system. Hence, an autonomic system consists of mana-
ged resources, which can be acted upon and monitored;
and an autonomic controller, which receives and pur-
sues goals.

An autonomic controller can be designed based on the
abstract and concrete elements in the conceptual model.
It can be recursively split into various combinations of
abstract, orchestration and control layers, each one im-
plemented via concrete CEs that pursue partial goals
over complementary scopes. Concretely, CEs can rep-
resent: i) control tasks – providing control-related func-
tions (e.g. monitoring, decision, execution, knowledge
management, other atomic functions or combinations of
these [5]; ii) integration tasks – providing integration-
specific functions (e.g. conflict resolution [4]); and iii)
control composites – consisting of flexible composi-
tions of control tasks and (optionally) integration tasks,
for providing more advanced control structures and

functions, such as single or integrated feedback loops.
Control composites can or not be encapsulated. When
encapsulated, they allow building fractal-like struc-
tures, viewed from the outside as a single well-integ-
rated CE [Fig. 3] – hence identical to a control task.

From a behavioural perspective, CEs may be: reactive
to external stimuli; reactive with additional state, or
knowledge; self-adaptive to changes; or agent1-like
managing and negotiating goals given by other entities.
To achieve such incremental capacities, the model
defines three types of control layers, where any CE may
include one or several of these layers. The base control
layer monitors and acts on managed resources follow-
ing a pre-selected strategy; it enables reactive beha-
viour. The meta-control or adaptation layer ensures the
base layer’s adaptation to change, by altering or fine-
tuning its strategy [13][14]; it enables self-adaptive be-
haviours. Finally, the goal management layer receives
requests for pursuing goals and decides whether or not
to accept them; it enables agent-like behaviours. The
decision may be binary or more nuanced, based on the
requester’s authority, on already accepted goals and
their conflicts with the new goals. Finally, abstract lay-
ers for goal translation will be application-specific.

4.2 Requirements for integration
Integrating CEs must rely on standardised interfaces
and protocols. While the details of these are domain
and application-specific, their general semantics and
purpose can be identified. This view is compliant with
the Autonomic Computing Blueprint [7], but extended
from control loops to all CEs [Fig. 3]. Hence, from an
external view, CEs are quite similar. They require mo-
nitoring and action interfaces for accessing managed re-
sources, which can also represent lower-level CEs.
They also provide monitoring and action interfaces for
allowing administrators and higher-level CEs to access
them. These interfaces are the main enablers for CE
layering and orchestration. Their semantics will differ
depending on the CE type and conceptual layer – e.g.,
they will represent concrete touchpoints for monitoring
and execution control tasks in a base control layer; and,
goal specification and evaluation touchpoints for con-
trol loops in an adaptation layer. Interface implementa-
tions will also differ – reactive CEs simply execute in-
coming actions, while agent-like CEs may execute, ne-
gotiate, or ignore them.

CEs may also provide and require functional interfaces
for exchanges with other CEs [Fig. 3]. As before, these

1 Software agent may be of these types [18], here we
only use goal-oriented agents that can manage goals.

exchanges are application-specific, but their general
purpose will depend on the CE’s function – e.g. in the
base control layer, they can enable the integration of
control tasks into feedback loops; in the self-adaptive
layer, they can provide access to search and discovery
services; for agent-like CEs, they can intervene in agent
negotiation and self-organisation. Depending on its use,
a CE may or may not provide all of these interfaces.

Figure 3: Control element interfaces.

4.3 Integration and adaptation
Integrating CEs into multi-goal, distributed and adapt-
able autonomic controllers requires handling problems
of communication, coordination and control. The archi-
tectural model identifies several integration-specific
CEs to help with such issues. Essential elements in-
clude distributed communication infrastructures, dis-
covery and repository services. Many such artefacts are
available from related research domains and no further
treated here. Conversely, coordination and control are
key concerns, which are especially challenging when
CEs and managed resources must be integrated dynam-
ically. Two complementary techniques can be adopted
here. The first one relies on facilities for runtime evalu-
ation, reporting and autonomic adaptation. This aspect
was included in the conceptual model and will be fur-
ther developed in future work. The second one relies on
imposing architectural templates or organisations – a
term borrowed from the agent community (e.g. [8][18]
[19]). An organisation defines an invariant system core,
or template, which can be ‘filled-in’ dynamically with
concrete resources depending on their availability and
state. Imposing an organisation can ensure, to a certain
extent, structural and behavioural properties for the res-
ulting adaptive system [3].

An organisation consists of several roles that interact in
a well-defined way. A role is defined via well-specified
set of capabilities (e.g. a ‘prosumer’ role in a smart grid
organisation). The role can be assigned to any resource
that provides these capabilities (e.g. a heater takes the
prosumer role), statically or during runtime. Autonomic
controllers are designed based on one or several com-
posed organisations, which are in turn defined based on
artefacts in the reference model. The exemplified micro
smart grid shows how predesigned organisations facilit-
ate system development and enable adaptation. A cata-
logue of reusable organisations can be progressively
developed for autonomic systems. A core set was
presented in [4] as integration design patterns. These
include centralised orchestrators, decentralised coordin-

ation via functions embedded in control elements, hier-
archical multi-layer organisations, and aggregator and
filter interceptors for integrated control flows.

5. Illustration via the micro smart grid

5.1 Application design and implementation
Like most SE contributions, evaluating the presented
reference model cannot rely on formal proofs and
would require too vast experimental resources to rely
on a meaningful empirical approach – e.g. [11]. Hence,
for now, it can only be validated through rigorous argu-
mentation and relevant exemplification, which is the
aim of this section. [Fig. 4] depicts the overall design of
the exemplified micro smart grid. In short, we first
identified the authorities involved and the types of
goals they could specify. For each goal, we spotted the
difficulty factors and addressed them using model arte-
facts. This resulted in well-defined organisations,
whose roles were then assigned to CEs with pre-coded
behaviours; these could also be discovered and
plugged-in at runtime. To address all goals at once, ini-
tial organisations were combined and extended with
conflict-resolution mechanisms placed in the conflict
zones. The overall design takes the shape of a hier-
archy, where abstract, control and orchestration layers
overlap at each node (CE). CEs pursue different goals,
sometimes conflicting, and operate at different scales.
Let us look at some details.

An electricity provider defines a power goal over the
district grid – ([GP_d_low, GP_d_high], district). The
district controller (CE_d) has a large SA, including all
appliances – here, heaters and lamps – in all district
houses, with different owners. Hence the district power
goal is split amongst goals with progressively smaller
scopes; each one is assigned to a new CE – e.g. CE_h1
and CE_h2 for house scopes; CE_r1, CE_r2, CE_l for
device scopes. CEs with larger scopes orchestrate
those with smaller scopes, resulting in a hierarchical ar-
chitecture. Next, abstraction layers are superposed
over the CE hierarchy to translate district power goals
(declarative) for the CE_d into orders (procedural
goals) for house and device CEs. This leads to an or-
ganisation that includes two roles: load managers that
pursue power goals by orchestrating prosumers. In
[Fig. 4] CE_d plays a load manager role, device CEs
prosumer roles and CE_h both roles – prosumer (for
CE_d) and manager (for device CEs). When a manager
detects that measures approach the power interval’s
high limit it sends a reduce_load order to its prosumers;
for the lower limit it sends a rise_load order; when well
in between the limits it sends an any_load order to can-
cel the previous ones. To avoid oscillations, these or-

ders are sent progressively, in random order, and the ef-
fects observed before new orders are sent. Finally, an
adaptation control layer can be added to manager CEs
to discover and integrate new prosumers (not shown).

Figure 4: Control design for the micro smart grid.

Figure 5: Design detail for the house control.

Home owners define goals for their house. These can
prioritise either a ‘comfort’ or ‘saving’ mode. As be-
fore, this leads to a hierarchical organisation that splits
the house goal (e.g. G(‘comfort’, h1) – declarative)
among device goals (e.g. G(‘comfort’, heater1) – de-
clarative). For device CEs, mode goals must be trans-
lated into concrete actions on devices. Hence, these
CEs are split into several abstract layers – e.g. for the
CE_r1 heater in [Fig. 5] modes are translated to temper-
atures (predefined) and then to power settings (via a
PID controller); an adaptation control layer could also
be added to the PID abstract layer for reconfiguration
purposes (not shown). Finally, home owners can also
set goals directly on devices, at different abstraction
layers – e.g. ‘saving’ mode or temperature on heater1.

To obtain a controller that pursues all presented goals
simultaneously, the corresponding organisations are su-
perposed onto one hierarchy. Here, CEs at each level

combine the architectural layers of all previous organ-
isations. Let’s see some of the conflicts that can occur.
One conflict is caused by district power goals and
house mode goals intersecting over the house scope –
the conflict zone includes all CEs and resources in the
home, as they belong to the SI of both goals. Another
one can occur between mode goals set for the entire
house and directly on each device – the conflict zone
includes the concerned device. Both conflicts are
handled by adding goal management layers to CEs in
the conflict zones [Fig. 5]. This layer receives conflict-
ing goals as inputs and provides a coherent goal as out-
put for the control layer below – e.g. power for load
managers in house CEs and temperature for PIDs in
heater CEs. It also represents an abstraction layer as it
translates declarative and procedural goals (mode and
orders) into a declarative goal (power or temperature
interval). A goal manager gives priority to mode goals
– if ‘comfort’, it ignores orders from load managers
above; if ‘saving’, it modifies the interval for the man-
ager below depending on the orders received ([Fig. 6]
and [Fig. 7]). In addition, device goal managers priorit-
ise goals set directly on the device over those derived
from the house mode.

5.2 Scenarios, results and discussion
The scenarios depict the micro smart grid when the out-
side temperature is dropping, heaters increase con-
sumption thus rising the district load [26]. They focus
on the behaviour of two district houses – h1 and h2. H1
is set to a ‘comfort’ mode – most heaters ignore load-
related orders and sustain a 23°C temperature; only a
few that were directly set in ‘saving’ mode respond.
Hence, h1’s power target is crossed [Fig. 7-a]. This
conforms to the user’s ‘comfort’ goal and will impact
the bill. The district manager detects a consumption in-
crease and starts sending reduce_load orders to house
prosumers. Since in ‘comfort’ mode, h1’s CE ignores
them. H2 is initially set to ‘saving’ and reacts by lower-
ing its power interval [Fig. 7-b]; it then sends
reduce_load orders to device prosumers to fit the new
range. Heaters react by lowering their temperatures to
20°C which therefore lowers their consumptions and
helps the district manager. To illustrate a dynamic goal
change, let’s assume that h2’s owners switch its mode
to ‘comfort’, to accommodate an unexpected guest. H2
self-adapts – its prosumers ignore orders and consume
more [Fig. 7-b].

The scenarios were run on a smart grid simulator that
models physical entities, like houses, rooms, grid, heat-
ers, lamps or solar panels; with related behaviours and
attributes such as heat transfer, temperature and
prosumption (in simulation time [s]). It is based on a

service-oriented component technology – iPOJO/OSGi
– and Akka middleware. These enable devices and CEs
to be deployed, reconfigured and removed at run-time.
A miniature house model was also built to ensure real-
istic behaviour. For limited space reasons, the presented
results (based on the simulation) were selected for illus-
trative purposes; a web version of the simulation is
available online for further explorations2.

Figure 6: Management of a flexible heater.

Figure 7: Power management in h1 (a) and h2 (b).

6. Related Work

This paper’s contribution intersects several interrelated
works, from various domains, from which we can only
cite a few here. Separating goals from the means of
achieving them has been proposed in autonomic com-
puting [17], system engineering [20] and software
agents [18]. In [17], management objectives can be
defined as procedural policies, declarative goals or util-
ity functions. In [20], ‘posed problems’ are separated
from the ‘resources’ that can solve them, hence delay-
ing resource selection until runtime. In the AI domain,
‘intelligent’ agents modify the environment to achieve
declarative goals [18]. They can adapt internal
strategies when faced with unpredictable situations. In
cybernetics, Ashby proposed an ‘ultra-stable’ architec-

2 try the simulation online at
http://perso.telecom-paristech.fr/~sfrey/

ture that relies on two superposed control loops for ad-
apting the system and its control strategy [13].

The presented reference model is consistent with these
approaches – it generalises goal definitions to include
scope and time (also identified in [10]), separates goals
from control logic and introduces meta-control layers to
self-adapt this logic and negotiate goals. Similar
layered architectures have been proposed in various do-
mains, including Brook’s subsumption architecture in
robotics [12] or Kramer and Magee’s architecture [14]
for autonomic systems. We drew inspiration from these
proposals and identified the different natures of con-
cerns that lead to system layering. The model thus pro-
poses abstract, control and orchestration layers, which
address orthogonal concerns and can be combined in
recursive ways. The organisation paradigm is common
in the Multi-Agent Systems domain [8][19] and was ad-
opted in the model to enable internal adaptation and in-
tegration of plug and play resources while conserving
important invariants. We are exploring this idea further
in a parallel project [3]. In [4] we have presented an ini-
tial catalogue of organisations focused on conflict res-
olution. Splitting controllers into CEs of various types –
such as control tasks and feedback loops – relies on
previous projects [5][6]. The feedback loop appears as
a first-class entity in all autonomic systems [15][7].

The presented reference model is complementary with
many contributions that address particular issues of
autonomic computing and IoT. These include numerous
application-specific solutions that propose ad-hoc ways
of constructing or integrating control-loops – e.g.
monolithic control in DigiHome [21]; hierarchical man-
agers in fANFARE [22], AutoHome [6], or using a
single coordination manager [23]; or agent-oriented
managers [11]. These fit the reference model represent-
ing particular instantiations. Another category of com-
plementary contributions focus on specific communica-
tion protocols and integration middleware for hetero-
geneous plug and play devices, like DigiHome [21] or
RoSe [22] home automation platforms. Finally, [24]
presents a generic integration model focused on cat-
egorising control loops based on their reciprocal inter-
ference (via shared knowledge) and proposing coordin-
ation and synchronisation protocols to integrate them.

Self-management requirements for the micro smart grid
have been identified in several works [25][27][28][29].
Notably, [25] proposes a distributed load management
algorithm, where “colour” statuses solve management
conflicts between load balancers and appliances. These
fit the reference model and can be adopted to imple-
ment corresponding CE layers. The smart grid domain

was targeted here as a rich use case for illustrating the
model and highlighting its main contributions.

7. Conclusions and Future Work

This paper proposed a reference model to help analyse
and design multi-goal, multi-scale, adaptive autonomic
control systems operating in distributed open environ-
ments, such as the IoT. It relies on the assumption that
autonomic systems of this kind will be built by integrat-
ing control elements (CEs) of diverse types. Taking a
SE-oriented approach, it aims to identify the reusable
artefacts that can help instantiate this type of solution.

The model comprises two complementary parts – con-
ceptual and architectural. The conceptual model con-
siders goals as key elements that should be separated
from the control logic necessary to pursue them. It
provides a goal definition that can be translated, split
and propagated across various CE types in the system,
down to concrete actions on resources. The main diffi-
culty factors are identified – including conceptual ab-
straction gaps, logistical complexity, adaptability and
scalability issues – and suitable SE techniques identi-
fied for addressing them – including orthogonal types
of layering and flexible modular architectures. The con-
ceptual model also identifies conflicts as stand-alone
elements that must be clearly defined, identified and
addressed. The architectural model relies on this con-
ceptual base to define more concrete artefacts for sys-
tem design. It includes several types of CEs – control
tasks, integration tasks and control composites – featur-
ing different behaviours and hence requiring different
facilities – base, adaptive and agent-like functions. To
integrate artefacts into flexible systems while ensuring
core properties the model adopts an organisation-orien-
ted approach inspired from the multi-agents. It indicates
how this can be extended with reusable artefacts specif-
ic to conflict-resolution to handle multi-goal scenarios.

To illustrate its applicability and benefits the paper
showed how a sample micro smart grid was designed
and implemented based on the reference model. Several
runtime scenarios were selected to show how to define
goals in business-specific terms, translate and split
them among several abstraction levels, deal with mul-
tiple authorities and heterogeneous resources, handle
multi-goal conflicts, adapt to dynamic context changes
and goal reconfigurations, and integrate new resources.
The paper did not address issues related to security con-
cerns and the possible incompatibility of integrated
CEs. System robustness and scalability were considered
in the model but not yet tested or shown here.

Future work will concentrate on analysing autonomic
systems in other domains to further test the model’s ap-
plicability and extend it if necessary. This will include
time-related concerns, which are critical to decision
making, decentralised coordination and system stabil-
ity. The authors’ intent is to bring forward the under-
standing of autonomic systems operating in the IoT
context and the associated support for developing them.

References

[1] D. Uckelmann et al., “Autonomous Control and the
Internet of Things: Increasing Robustness, Scalab-
ility and Agility in Logistic Networks”, in Unique
Radio Innovation for the 21st Century, Springer-
Verlag, Berlin Heidelberg, 2010.

[2] P. Lalanda, J.A. McCann, A. Diaconescu, “Auto-
nomic Computing – Principles, Design and Imple-
mentation”, Springer, due: May 2013.

[3] B. Debbabi, A. Diaconescu, P. Lalanda “Con-
trolling self-organising software applications with
archetypes”, IEEE SASO, Lyon, France, 2012.

[4] S. Frey, A. Diaconescu, I. Demeure, “Architectural
Integration Patterns for Autonomic Management
Systems", IEEE EASe, Novi Sad, Serbia, 2012.

[5] Y. Maurel, P. Lalanda, A. Diaconescu, “Towards a
service-oriented component model for autonomic
management”, IEEE SCC, Washington DC, USA,
2011.

[6] J. Bourcier, A. Diaconescu, P. Lalanda, J. McCann,
"AutoHome: an Autonomic Management Frame-
work for Pervasive Home Applications", ACM
TAAS, Vol. 6, Iss. 1, Feb. 2011.

[7] “An architectural blueprint for autonomic comput-
ing”, IBM Whitepaper, June 2005, 3rd edition.

[8] B. Horling and V. Lesser, “A survey of multi-agent
organizational paradigms”, Knowledge Engineer-
ing Review, Vol. 19, No. 4, 2004, pp 281-316

[9] K. Ogata, “Modern Control Engineering”, Prentice
Hall, 2nd edition, 1990.

[10]“Collective Adaptive Systems”, Expert Consulta-
tion Workshop Report, FET Proactive, Nov. 2009

[11]N. Jennings and S. Bussmann, “Agent-Based Con-
trol Systems – Why are They Suited to Engineer-
ing Complex Systems?”, IEEE Control Systems
Magasine, June 2003, pp 61-73.

[12]R. A. Brooks, “Cambrian Intelligence: The Early
History of the New AI”, A Bradford Book, 1st edi-
tion, July 1999, ISBN-13: 978-0262522632

[13]W. R. Ashby, “Design for a Brain: The Origin of
Adaptive Behaviour”, Chapman and Hall, Ltd.

London, 2nd edition, 1960. (1st edition in 1952)

[14] J. Kramer, J. Magee, “Self-Managed Systems: an
Architectural Challenge”, Future of Software En-
gineering, Washington DC, USA, 2007.

[15]Y. Brun et al., “Engineering Self-Adaptive Sys-
tems through Feedback Loops”, in “Self-Adaptive
Systems”, Springer, Berlin, 2009, pp. 48–70

[16]C. Müller-Schloer, H. Schmeck, T. Ungerer (Edt.),
“Organic Computing – A Paradigm Shift for Com-
plex Systems”, Springer Basel AG, 2011

[17]J. O. Kephart, W. E. Walsh, “An Artificial Intelli-
gence Perspective on Autonomic Computing
Policies”, IEEE POLICY 2004, pp. 3-12

[18]S. Russell and P. Norvig, “Artificial Intelligence:
A Modern Approach”, Prentice Hall, 3rd ed., 2009

[19] D. Weyns, R. Haesevoets, A. Helleboogh, T. Hol-
voet, W. Joosen, “The MACODO Middleware for
Context-Driven Dynamic Agent Organizations”,
ACM TAAS, 5(1):3.1–3.29, 2010

[20]C. Landauer, “Problem Posing as a System Engin-
eering Paradigm”, IEEE ICSENG, Washington,
DC, USA, 2011, pp. 346-351.

[21]D. Romero et al., “The DigiHome Service-Ori-
ented Platform”, Softw. Pract. Exper, 2011; p1–27

[22]Y. Maurel et al., “fANFARE: Autonomic Frame-
work for Service-based Pervasive Environment”,
IEEE SCC 2012, Honolulu, USA, pp. 65-72

[23]S.M.-K Gueye, E. Rutten, A Tchana, “Discrete
Control for the Coordination of Administration
Loops”, IEEE Intl. Conf. UCC 2012, pp.353-358

[24]F. A. de Oliveira, R. Sharrock, T. Ledoux, “Syn-
chronization of Multiple Autonomic Control
Loops: Application to Cloud Computing”, CO-
ORDINATION 2012, Stockholm, Sweden.

[25]J. Beal, J. Berliner, K. Hunter, “Fast Precise Dis-
tributed Control for Energy Demand
Management”, IEEE SASO 2012, Lyon, France.

[26]S. Frey et al., “Scenarios for an Autonomic Micro
Smart Grid”, Intl. Conf. on Smart Grids and Green
IT Systems, Porto, Portugal, 2012. (4 pages)

[27]B.Becker et al “Decentralized Energy-Management
to Control Smart-Home Architectures”, Lect.
Notes in Computer Science, Vol. 5974, 2010.

[28]H. Schmeck and L. Karg, “E-Energy – Paving the
Way for an Internet of Energy”, Information Tech-
nology, Vol. 52, No. 2, 2010, pp. 55-57.

[29]H. Hermanns, H. Wiechmann, “Demand-Response
Management for Dependable Power Grids”. Em-
bedded Systems for Smart Appliances and Energy
Management. Springer New York, 2013, pp 1-22.

