
This work has been funded by MINALOGIC (Rhône-Alpes) as part of MEDICAL research project

Self-Growing Software from Architectural Blueprints.

Ada Diaconescu

CNRS LTCI, Télécom ParisTech

Paris, France

<name.surname> @ telecom-paristech .fr

Bassem Debbabi and Philippe Lalanda

LIG laboratory, University of Grenoble

Grenoble, France

<name.surname> @ imag .fr

Software applications are commonly built as a set of

heterogeneous, interconnected modules. In the presented
research, the challenge we’re addressing is rooted in two
seemingly antagonistic requirements of such systems. First,
computing systems must continuously provide a predefined
set of business functions and QoS properties. Second,
computing systems must often modify their internal
composition and configuration, in order to survive and adapt
to runtime changes. Transforming a system’s structure and
contents during its execution while not impeding on its core
functionalities constitutes a difficult and risky task, at best.

From this perspective, we are developing an autonomic
framework – CUBE (cube.forge.imag.fr), for enabling
software systems to self-grow their internal compositions so
as to preserve their functions in various contexts. CUBE was
designed considering the following system requirements: 1) a
software system must always ensure a Core Set of functions
and QoS properties; 2) a system may be executing at various
degrees of optimisation, offering an additional Optional Set
of functions and QoS properties; 3) a system must survive
and adapt to changes in its internal composition and external
execution environment (so as to continue to ensure 1 and 2).
Hence, CUBE aims to enable software systems to self-grow
into instances that provide their Core requirements, while
maximising Optional requirements. Moreover, CUBE endows
software systems with several Self-* capabilities – e.g. self-
repair, self-optimisation and self-adaptation. Self-* processes
enable systems to dynamically transform themselves so as to
still meet their requirements when changes occur.

For achieving these capabilities, CUBE relies on the
decentralised runtime instantiation of architectural
blueprints. An architectural blueprint, defines the Core Set
of constraints that all system instances must meet – i.e. a set
of heterogeneous types, interconnections and QoS properties.
A decentralised interpreter consisting of multiple Autonomic
Managers (AMs), or agents, concurrently creates an overall
system instance that conforms to the architectural blueprint,
while being adapted to the current environment. Namely,
each AM creates: a partial instance for one blueprint section;
and, further AMs for handling adjacent blueprint sections.
Existing AMs self-organise so as to interconnect their partial
instances into a coherent system. In this manner, the self-
growing process progresses from several initial AMs to an
entire software application. As changes occur (e.g. internal
component crashes or lack of external resources) the
concerned AMs transform the existing instance for the new
conditions, while still expressing the blueprint (archetype).

In this approach, the architectural blueprint represents the
generic features that will inevitably occur in all system
instances. Yet, each system instance can be unique with

respect to various composition and configuration details (e.g.
exact module implementations or number of instances).
While archetypal constraints are imposed by system
designers, instantiation details are left to the self-* processes
to work-out during runtime. Hence, CUBE combines the
control capabilities of “traditional” software engineering
methods for ensuring Core system properties (i.e. what can
be known at system design time), with the flexibility
characteristics of self-organising methods for ensuring
survivability and self-adaption features (i.e. what cannot be
predicted in advance and must be decided at runtime).

To better illustrate our approach we make an analogy
with a natural system - i.e. trees, which seem to feature many
of the qualities we are aiming for. In this approximate
analogy, a tree can be viewed as a self-growing system
whose Core capability is the extraction and self-organisation
of surrounding resources (e.g. C, O, H, N, ... + solar energy)
into a certain structure. This structure is capable of: surviving
- using resources to stay alive; growing - self-organising
extra resources to enlarge itself; and self-replicating -
producing seeds for reproducing itself. A set of self-*
capabilities ensures that trees can carry-out their Core
functions in a wide range of environmental conditions. E.g.,
self-repair - use resources to fix injuries; self-optimisation -
maximise growth and optimise shape so as to gather more
resources and create more seeds.

While each tree is different (i.e. different phenotypes -
crown and trunk shapes and sizes, or number of seeds) all
trees feature a common set of traits that ensure the same Core
characteristics (e.g. all trees have a trunk and a crown; and
will produce seeds). This important property is warranted by
the common genotype that generally “defines” all trees of a
given species. In this context, the genotype can be viewed as
the system’s design part that is considered “worth” keeping
and instantiating (and possible to keep and instantiate) across
generations. This part has proven successful in the past and
hence provides an advantage if imposed as a starting point in
the future. Its absence would imply starting from zero at each
instance, and evolving only as far as each individual’s
lifetime permitted. This would severely limit supported
system complexity. Finally, the life-time process that maps a
genotype into individual phenotypes ensures the individual
adaptability needed within a targeted environmental space.

Similarly, CUBE’S architectural blueprint will define
well-proven, core design patterns, which will provide an
essential starting point for self-organising systems. Imposing
such archetypes guarantees that self-organising systems will
provide their core functions. Hence, we believe this solution
may enable the applicability of self-organising approaches to
more functionally-complex computing systems.

file:///C:/ada/work/papers/MEW2011/cube.forge.imag.fr

