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Automated control in Cyber-Physical Systems (CPS) generate behaviours that may surprise non-expert users. Relevant explanations
are required here to maintain user trust. Large CPS (e.g. autonomous car networks and smart grids) raise additional scalability issues
for the explanatory processes and complexity issues for generated explanations. We propose a multi-scale system modelling and
explanation technique to address these concerns. The idea is to increase the scale, or abstraction level, of the modelled CPS, whenever
possible, so as to produce smaller system representations and hence to reduce the complexity of the explanatory process and of
the generated explanations. We illustrate our proposal via an urban traffic case study, modelling traffic at two different scales (i.e.
modelling individual cars at a lower-scale; and traffic jams at a higher-scale). We show how a multi-scale explanatory process can use
the lower- and higher-scale models to generate either longer (more detailed) explanations, or shorter (more abstract) explanations,
respectively. This proof-of-concept illustration offers a basis for further research towards a comprehensive multi-scale explanatory
solution for CPS.
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1 INTRODUCTION

Cyber-physical systems (CPS), such as autonomous cars, smart homes and power grids, are increasingly equipped with
Artificial Intelligence and autonomic controllers. This shifts numerous adaptation decisions from the user to the CPS
(e.g. tuning a car’s speed depending on traffic; or scheduling a smart device’s usage to minimise consumption). Such
automation may lead to cases where CPS behaviour surprises users, who notice a difference between the observed
and the expected CPS behaviour (e.g., why is my car driving so slowly? why did the automatic blinds go down?). To
maintain user trust, CPS must provide pertinent explanations to such questions, case-by-case [1]. The EU General Data
Protection Regulation (GDPR) goes as far as to evoke the ‘right to explanation’ for users of AI systems [9].

An increasing amount of research is carried-out in this direction under the umbrella of Explanatory AI (XAI). The
focus is often on “opening the black box” of opaque AI models (i.e. neural networks). E.g., LIME [15] or SHAP [12]
methods propose to explain classifier outputs in terms of feature relevance – i.e., determine which feature of the input
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made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
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redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
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data was most discriminating in the classifier result (e.g. a person’s age was the prime decision factor in a bank’s
loan validation algorithm). Several XAI approaches were proposed for various AI models and applications [2]. Still,
most XAI techniques feature significant limitations. Notably, they aim to explain static AI models and hence cannot
adapt to runtime changes. This drawback becomes severe in CPS, which often evolve by adding, updating or removing
components (e.g. cars joining and leaving platoons; or smart devices plugged in and out of smart micro-grids). Moreover,
most XAI explanations are unsuitable for end-users, as they require domain-specific expertise [13].

To address these issues, we previously proposed a generic adaptive approach for generating intuitive explanations
for users: Decentralised Conflict-Abduction-Simulation (D-CAS) [10], [6] (Cf. sec. 3.2). D-CAS generates explanations
on-the-fly, by dynamically selecting Local Explanatory Components (LECs) from a flexible pool and composing their
partial explanations into coherent answers. Each LEC is linked to a CPS resource and holds specific expertise for
explaining that resource. When users ask a question, a generic D-CAS coordinator, called Spotlight, forwards the
question to a LEC that holds relevant expertise for that question. The LEC is identified based on key terms, or ‘predicates’,
in the question. Based on this LEC’s answer (again, using employed ‘predicates’), the Spotlight identifies another LEC
to question for further explanations. The process is recursive and guaranteed to end, at the latest, when all relevant
LECs have provided all their partial answers. At that point, the Spotlight returns all partial explanations (composed in a
sequence) that it received from all questioned LECs. We assume that LECs are provided by CPS resource vendors (e.g. a
car-specific LEC, containing relevant explanatory predicates and logic, bundled within an autonomous car).

While promising to address the above limitations, D-CAS raises further issues when applied to large CPS (e.g. urban
traffic analysis involving tens of thousands of cars; or smart grids interconnecting millions of smart devices). The
scalability of the explanatory process and the complexity of explanations provided to users play a major role in such
cases. In this position paper, we propose a multi-scale modeling & explanation approach to start addressing the issues
above. We base our proposal on the fact that scalability and complexity issues in large CPS partially stem from the
sheer number of CPS resources, and their associated explanatory concepts, that must be considered as input / output to
the explanatory process. We aim to reduce this number via a multi-scale approach [4], [5], applied to the XAI domain.

In brief, we consider an explanation as a statement1 – i.e. set of words, arranged sequentially according to some
grammar, and providing some semantics, or meaning, to the user recipient. We further associate certain words2 – such
as nouns, verbs, adjectives and adverbs – to explanatory concepts – i.e., representations, conceived in the mind, of
either: abstract objects (e.g. ideas, principles and notions); or of concrete cyber-physical objects (e;g. autonomous cars
and smart devices). This notion of explanatory concept corresponds to a type in a system’s meta-model. Further, we
consider explanatory concepts to represent objects of various abstraction levels, or scales (Cf. below). We then propose
to reduce the length of complex explanations, when possible, by replacing several low-scale concepts (i.e. representing
less abstract or smaller objects) by a single higher-scale concept (i.e. representing a more abstract or larger object). The
higher concept is supposed to convey the same kind of information as the set of lower concepts it replaces, except in a
more concise manner. This simplifies explanations to users, while maintaining relevant semantic content.

Generally, we define a scale as the granularity of observation of an object [4], [5]. E.g., traffic in an urban area can
be observed at the granularity of every vehicle, of platoons, or of congestion level. A coarser granularity corresponds
to a higher abstraction level – providing less detailed information about the observed object – compared to a lower

1Statement definition based on the Sentence definition from the Oxford dictionary online: “a set of words expressing a statement, a question or an order,
usually containing a subject and a verb.
2Word definition from the Oxford dictionary online: “a single unit of language that means something and can be spoken or written”
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granularity. In this context, the notion of multi-scale refers to the simultaneous observation of an object at multiple
scales. E.g., urban traffic can be modelled simultaneously: at the scale of each car, of each platoon and of its congestion.

We apply the multi-scale notion to explanatory concepts as follows. A lower-scale explanatory concept refers to an
object observed at a finer granularity (i.e. less abstract, smaller in space, or shorter in time), relative to a higher-scale
concept that refers to an object observed at a coarser granularity. E.g., in urban traffic, the ‘car’ concept is lower-scale
relative to the traffic ‘jam’ concept, as it involves a finer observation granularity, at a smaller spatial scope. We employ
multi-scale explanatory concepts to attain scalable explanations as follows. We consider that, to achieve its purpose
efficiently, an explanation must be: i) ‘relevant’ – i.e., solve the problem raised by the question that demanded the
explanation; and, ii) as simple as possible (but not simpler) – i.e. be expressed via the shortest description that is still
relevant (i). Hence, we propose to shorten explanations by employing words associated with the highest-scale concepts,
which still ensure the explanation’s relevance to the user.

We illustrate the viability of this approach via a concrete case study targeting urban traffic (Fig. 1). First, we employ
a multi-agent simulation (subsec. 2.2) to provide an adaptive multi-scale model of urban traffic. In the model, low-scale
concepts refer to individual cars and higher-scale concepts to traffic jams. Further, we extend our D-CAS implementation
[6] with traffic-specific LECs, customised for cars and jams. This D-CAS version is integrated with the traffic model via
monitoring data (i.e. the model provides information about the positions and speeds of cars and jams on the roads).

Fig. 1. Generic System Architecture: an Observed System is represented via a Model, which provides a conceptual basis for an
Explanatory System for Users. We illustrate a case study where the observed system is represented via a traffic model.

A user can then ask questions about the traffic to the explanatory system – e.g. why is my car driving so slowly?.
We illustrate the multi-scale aspect of the explanatory system by providing alternative answers. The first one uses the
explanatory concept of ‘car’, and states that: the car is slow because the car in front is slow, and so on, recursively, until a
car at the end of the line is found to have a mechanical problem – this explanation employs low-scale concepts resulting
in a long statement. The second explanation variant uses the explanatory concept of ‘jam’: the car is slow because there
is a jam in front, which is due to a front car that has a mechanical problem – this variant employs higher-scale concepts
resulting in a shorter response. This proof-of-concept illustration provides an encouraging basis for further developing
our multi-scale modelling and explanation approach, so as to provide a scalable solution for explainable CPS.

2 APPROACH OVERVIEW

2.1 Generic Architecture

Fig. 1 depicts our generic system design. An Observed System (e.g. urban traffic) is represented via a System Model to
highlight properties of interest (e.g. traffic fluency) under various conditions (e.g. car number). An Explanatory System

enables Users to ask questions about the Observed System, at runtime. To respond, the Explanatory System relies upon:
3
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(1) monitoring data from the System Model, which it maps into its domain-specific explanatory concepts, called
predicates (Cf. subsec. 3.2.3) – e.g. mapping car ‘speed’ data into ‘slow’ or ‘fast’ predicates;

(2) a reasoning process based on D-CAS and on expert-specific abduction processes (Cf. subsec. 3.2.2).

The System Model may change dynamically to reflect changes in the Observed System. The Model relies on
concepts (i.e. meta-model) that may also vary dynamically, to improve the effectiveness and efficiency of the System’s
representation with respect to targeted properties within various contexts – e.g. via adaptive abstractions [8].

2.2 Adaptive Multi-scale Model for Urban Traffic

To illustrate our general proposal for multi-scale modelling and explanations, we consider a concrete case study: urban
traffic. The transport network is modelled as a graph, with nodes as departure/destination points and edges as routes
between them. Vehicles circulate at various speeds, which depend on the other vehicles. When too many cars attempt
to pass through one node, they must wait for each other, hence lowering their speeds and forming a traffic jam.

This basic case study is relevant to our approach as it allows traffic modelling at various scales, which may change in
time. When traffic is fluent, individual cars may travel at various speeds. Hence, each car is modelled separately, forming
a low-scale model. Conversely, when cars are caught in a traffic jam, they move at approximately the same speed. Hence,
a higher-scale model can aggregates all the cars in a jam via a single virtual car. The speed of this aggregate car averages
the individual speeds of the actual cars in the jam. When the traffic becomes fluent again the model switches-back to its
lower-scale version. This adaptive multi-scale traffic model was implemented via an agent-based platform ( NetLogo3).

3 GENERATIVE EXPLANATIONS: BACKGROUND & MULTI-SCALE EXTENSION

3.1 Conflict Abduction Negation (CAN) Explanation Method

According to [3], a user typically requires an explanation to resolve a conflict between an expected and an observed
situation (e.g. traffic slower than expected). An explanation consists of a chain of explanatory concepts, which represent
causes [14] of the perceived conflict. The explanatory process identifies each cause individually, in sequence. It can then
return the resulting causal chain to the user as an explanation for the perceived conflict. [3] proposes a generic abductive
method that can be employed to generate such explanations – Conflict-Abduction-Negation (CAN). CAN formalises the
above explanatory process via four generic steps (to be implemented specifically for each system), executed sequentially:

• conflict: detects a discrepancy between expectation and observation and associates a necessity (intensity) to it;
• abduction: identifies the most probable cause of the conflict (using various abduction methods);
• negation: considers situations without the conflict (‘counterfactuals’ [14]) and evaluates the consequences;
• solution: solves the conflict by reconsidering knowledge (e.g. false-positive conflict), by acting on the world

(e.g. change the conflicting state) or by abandoning the conflict (i.e. avoid blockage or infinite loops).

While providing a suitable reasoning process to obtain explanations, CAN features several limitations when imple-
mented as a centralised, monolithic process. Notably, it cannot deal with highly heterogenous and dynamic systems
(e.g. traffic systems), where various resource types may be included or removed by different vendors at runtime. To
address this requirement, we proposed a modular, decentralised CAN version, called D-CAS.

3.2 Decentralised Conflict Abduction Simulation (D-CAS) Explanation Method

3.2.1 Key Design Objectives. To ensure the explanatory system’s adaptability to the observed system, we aim to:
3NetLogo homepage: https://ccl.northwestern.edu/netlogo/
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(1) Avoid hard-coded ontology: the employed vocabulary (i.e. words and their semantics) should evolve at runtime,
to reflect changes in the observed system (e.g. adding a ‘queue’ to a traffic model requires a new word); as well
as changes in the user’s perception (e.g. user- and context-dependent semantics of the word ‘slow’).

(2) Avoid hard-coded reasoning rules: the employed abduction logic should be adaptable at runtime, e.g. to consider
vocabulary updates and include new reasoning methods.

These design objectives ensure the flexibility of the explanatory process – in contrast to methods where both vocabulary
and reasoning are tightly-coupled to the observed system. D-CAS proposes a generic framework that supports such
dynamic vocabulary and reasoning processes. While its current prototype still hard-codes vocabulary and provides
simple abduction methods, these initial implementations can be replaced seamlessly by more flexible variants (Cf. [6]).

Namely, to achieve objective (1), system monitoring data is decoupled from explanatory concepts via events, predicates
and propositions (subsec. 3.2.3). These are specified in the Interpretation Module of every LEC. To achieve (2), each LEC
supports a plug-and-play set of Abduction Modules, each including a specific kind of abduction method (e.g. [6], [7]).

3.2.2 D-CAS Design. Decentralised Conflict, Abduction, Simulation (D-CAS) is a decentralised version of the CAN
method. It proposes to implement CAN’s Negation step via Simulation. D-CAS features a modular plug-and-play design
(Fig. 2), where vendor-specific expert components – called Local Explanatory Components (LECs) – can be integrated
and employed within the explanatory process on-demand, whenever relevant to an explanation. We associate one LEC
to each type of observable system resource that is of interest to the explanatory system. Each LEC holds:

(1) a vocabulary (i.e., set of explanatory concepts, or ‘predicates’) for statements about the associated resource (e.g.
‘car’ and ‘slow’ for a Car-specific LEC). The LEC interprets these predicates dynamically, based on monitoring
data from the system model (e.g. a car is considered slow if its monitored speed is lower than a threshold);

(2) a set of abduction techniques for finding the causes of conflicts that are related to the associated resource (e.g. a
problem’s cause is: the last memorable event [6]; same as last time; indicated by a causal Baesyan network [7]).

Fig. 2. D-CAS Generic Architecture, exemplified for the Urban Traffic case study

To select LECs that are relevant to each explanation and to compose their answers into a coherent response for
the user, we introduce a generic coordinator, called Spotlight. The Spotlight’s role is similar to that of a Naming and
Directory Service, or Repository (e.g. Yellow Pages). It keeps track of all LECs in the system and of the kind of problems,
or conflicts, that they can address. In brief, when the user questions the Spotlight, this latter: i) identifies the LECs
that hold the expertise relevant to that question; ii) questions the identified LECs sequentially; and, iii) returns their
composed answers to the user, as a single coherent statement. Importantly, the Spotlight ignores all details related to the
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system resources and their explanations (these are only encoded into the LECs’ Interpretation and Abduction Modules).
This means that while centralised, the Spotlight remains a lightweight and generic entity that does not need to evolve
and adapt to various systems, or to their runtime changes. D-CAS approach is similar to an expert system that relies on
a set of problem-specific experts, which can be added, removed and updated at runtime. To answer a question (or solve
a problem) the relevant experts can be identified and questioned case-by-case. This modular and loosely-coupled design
helps to address some of the scalability and adaptability issues inherent in the original CAN version.

The formal D-CAS process for LEC selection and coordination is listed in Algorithm 1. In more detail, the Spotlight
receives a question in the form of a conflict (subsec. 3.1). It identifies the LEC holding expertise about that conflict
(based on contained predicates) and forwards the question to this LEC. E.g., the question ‘why a car is slow’ will go to a
Car-specific LEC, from the car vendor. Next, the LEC checks whether the conflict is valid based on its monitoring data
(e.g. is the car slow according to its speed?). If the conflict is invalid, the LEC returns this fact to the Spotlight, which
informs the user. Otherwise, the LEC uses its abduction logic to determine the cause of the conflict (e.g. the car in front
is also slow). The LEC returns the cause to the Spotlight, as a new conflict, which will be forwarded to another LEC.

The process continues, recursively, forming a sequential reasoning chain, until a LEC provides an answer that can
no longer be followed (e.g. invalid conflict; or, conflict solved by an action; or, no further expertise is available to
continue the reasoning chain). This guarantees the end of any reasoning chain. The causal chain obtained from the
LECs’ questioning sequence is returned to the user as explanation (e.g. Fig. 3). When a reasoning chain is completed, the
Spotlight may also question previous LECs again to provide an alternative cause. This starts a new reasoning chain and
results in a tree-like topology (rather than a line) for the Spotlight’s questioning sequence – not shown here, Cf. [6].

3.2.3 D-CAS Conceptual Formalism: Events, Predicates and Propositions. Predicates are boolean functions over events,
which are issued from the observed system’s data [11], [6]. Evaluating a predicate results in a boolean proposition. E.g.,
in the urban traffic case study: a car’s model provides monitoring data about its speed; a Car LEC’s 𝑆𝑙𝑜𝑤 () predicate
evaluates this data and returns a proposition 𝑆𝑙𝑜𝑤 = 𝑡𝑟𝑢𝑒 if the car’s speed is lower than a threshold; and a proposition
𝑆𝑙𝑜𝑤 = 𝑓 𝑎𝑙𝑠𝑒 otherwise. Hence, predicates provide the mapping function for dynamically transforming the observed
system’s data into the explanatory system’s vocabulary. While in the current implementation these predicates are
hard-coded, future versions will replace these by dynamically defined functions (e.g. via online learning and dialogue).

3.3 Multi-scale Explanations

To support multi-scale explanations, D-CAS simply needs to integrate multi-scale explanatory concepts (i.e. predicates)
into its vocabulary. It may then reuse its existing abduction methods to reason upon the new higher-scale concepts.
Alternatively, it may integrate new abduction methods that are specific to these higher concepts. The above extensions
only require to provide new LECs for the higher-concepts; the rest of the D-CAS framework stays unchanged. The
new LECs may also reuse the generic LEC implementation provided by D-CAS framework; and plug into it the specific
Interpretation and Abduction Modules for holding the higher-scale vocabulary and abduction logic, respectively.

4 TRAFFIC SIMULATION CASE-STUDY

4.1 Multi-scale Model

To provide the multi-scale system model, we relied on a multi-agent implementation (NetLogo) of the traffic case
study in subsec. 2.2. The simulation provides adaptive abstractions [8] (or scales) in the sens that it models each car
individually when traffic is fluent (i.e. low-scale concept) and aggregates all cars caught-up in traffic congestion under
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Input: A request req from the user
Result: A conflict-solving process whose trace can be exposed as an explanation
Data: Pointers to the LECs in the system
𝐶 a set of examined conflicts, 𝐺 a set of considered give-ups
(P, N)← analyzeRequest(req);
responsible← locate(P);
while responsible ≠ 𝑠𝑒𝑙 𝑓 do

if responsible = null then
Backtrack() ;

end
answer = responsible.investigate((P, N)) ;
switch answer do

case ABDUCTION do
(P, N) ← Answer.Hypothesis ;
responsible← locate(P) ;

end
case GIVE UP do

Backtrack();
end
case ACTION do

simulator.run(Answer.Action) ;
Conflict← waitForProblems() ;

end
end

end
Algorithm 1: D-CAS Algorithm: the Spotlight successively considers conflicts and forwards them to relevant LECs

a single jam (i.e. higher-level concept). The simulation keeps both high- and low-scale models in parallel, so it can
seamlessly switch between them as the traffic context changes.

The model provides data about each simulated car (e.g. 𝑐𝑎𝑟𝑖𝑑 , spatial coordinates, speed, travelled road). When
detecting a traffic jam the simulation adds to the model a virtual aggregated car that represents all cars in the jam. Jam
data includes the 𝑗𝑎𝑚𝑖𝑑 , position in space, affected road, number and identity of contained cars. We ran the simulation
with 200 cars and 15 destinations linked in a star-like road network (Fig. 1); we used traffic data from one of the roads.
Initially, cars are distributed randomly in the destinations and start moving randomly via the roads available at each
destination. Runtime simulation data is stored in a log file, which is then provided as input to the Explanatory System.

4.2 Multi-scale Explanation: Implementation, Experiments and Results

4.2.1 Design & Implementation overview. We reused the generic Explanatory System implementation (in Python) in [6]
and customised it with domain-specific LECs for the urban traffic case (Fig. 2). Namely, we implemented two types of
customised LECs: Car LEC and Jam LEC. These are based on the generic LEC implementation [6] with specific modules
for Abduction and Interpretation (i.e. specific reasoning and vocabulary, respectively). LEC instances were created for
each car and jam (i.e. by hand here but can be done dynamically upon automatic car / jam detection in the model).

4.2.2 Predicates in the Interpretation Modules. The following predicates were defined in the Interpretation modules of
Car and Jam LECs, respectively (i.e. the first four belong to the Car LEC; the last two to the Jam LEC):
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(1) 𝐶𝑎𝑟 (𝑐𝑎𝑟𝑖𝑑 ): true if the the car has the given ID;
(2) 𝐴ℎ𝑒𝑎𝑑𝑂𝑓 (𝑐𝑎𝑟𝑖𝑑 ): true if the car is in front of another car with the given ID;
(3) 𝑆𝑙𝑜𝑤 (): true if the car to which the question is asked moves at a speed that is lower than a given threshold (i.e.

0.05 in the experiments, based on the simulation values);
(4) 𝑂𝑛𝑅𝑜𝑎𝑑 (𝑟𝑜𝑎𝑑𝑖𝑑 ): true if the car to which the question is asked drives on a road with the given ID;
(5) 𝐽𝑎𝑚( 𝑗𝑎𝑚𝑖𝑑 ): true if the jam has the given ID;
(6) 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠𝐶𝑎𝑟 (𝑐𝑎𝑟𝑖𝑑 ): true if the jam contains the car with given ID.

4.2.3 Causal Propositions in the Abduction Modules. The Car LEC’s Abduction Module specifies two alternative causal
propositions (NOTE: not be confused with boolean ‘propositions’ in the vocabulary) to determine the causes for a slow
car: either because the car in front is slow (𝐶𝑎𝑢𝑠𝑎𝑙𝑃𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐴), or because there is a jam in front (𝐶𝑎𝑢𝑠𝑎𝑙𝑃𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐵 ).
A further proposition (𝐶𝑎𝑢𝑠𝑎𝑙𝑃𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐶 , not simulated) states that a jam’s first car (i.e. the car with 𝑐𝑎𝑟𝑖𝑑 = 95 in
our example) is slow because of a𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙𝐹𝑎𝑖𝑙𝑢𝑟𝑒 . More precisely, the Car LEC’s Abduction Module provides the
following alternative causes for questions containing the 𝑆𝑙𝑜𝑤 predicate:

• 𝐶𝑎𝑢𝑠𝑎𝑙𝑃𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐴: the cause is the car in front of the car in question (i.e. via the 𝐴ℎ𝑒𝑎𝑑𝑂𝑓 predicate);
• 𝐶𝑎𝑢𝑠𝑎𝑙𝑃𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐵 : the cause is the jam that contains the car in question (i.e. via the 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠𝐶𝑎𝑟 predicate);
• 𝐶𝑎𝑢𝑠𝑎𝑙𝑃𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐶 : if the car in question has 𝑐𝑎𝑟𝑖𝑑 = 95 then the cause is a𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙𝐹𝑎𝑖𝑙𝑢𝑟𝑒 .

The Jam LEC’s Abduction Module includes a causal proposition (𝐶𝑎𝑢𝑠𝑎𝑙𝑃𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐷 ) which states that the jam is
slow because of the first slow car that it contains (i.e. 𝑐𝑎𝑟95 in our example). Hence, when asked a question that contains
the 𝑆𝑙𝑜𝑤 predicate, the Jam LEC’s Abduction Module provides the following cause:

• 𝐶𝑎𝑢𝑠𝑎𝑙𝑃𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐷 : the cause is the first car in the jam, which is car with 𝑐𝑎𝑟𝑖𝑑 = 95 in our simulation.

4.2.4 D-CAS Experiments. In brief, the overall explanatory process was obtained as follows. The traffic simulation
(subsec. 4.1) was executed and monitoring data on cars and jams were recorded in a log file. This log data was then
transferred to the Explanatory System’s knowledge database (BDD Redis) (Cf. details in [6]). We then sent commands
to the Explanatory System to create the Car and Jam LECs, configured with the special-purpose Interpretation and
Abduction modules specified above. At this point, the Explanatory System was operational and ready to answer
questions. Before running an experiment, we select, by hand, one of the two causal propositions for the Car LEC’s
abduction module. This choice should be performed automatically in the future; the current experiments are illustrative.
This results in two kinds of experiments:

• Lower-Scale Explanation Experiment: uses 𝐶𝑎𝑢𝑠𝑎𝑙𝑃𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐴 to determine causes based on individual cars;
• Higher-Scale Explanation Experiment: uses 𝐶𝑎𝑢𝑠𝑎𝑙𝑃𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐵 to also employ the higher-scale 𝑗𝑎𝑚 concept.

At the start of each experiment, we asked the following question to the Explanatory System’s Spotlight: “𝑊ℎ𝑦

𝐶𝑎𝑟 (422) 𝑆𝑙𝑜𝑤 ()”, where 422 was the 𝑐𝑎𝑟𝑖𝑑 of a car that entered a jam in the traffic simulation. This question may be
asked by the driver of the car in question. The Explanatory System returned one of the alternative explanations in Fig.
3. In both experiments, the Spotlight received the question and forwarded it to the LEC of 𝑐𝑎𝑟422 – the object of the
question. Afterwards, the answer given depended on which casual proposition was selected in the Car LEC’s Abduction
Module.

In the Low-Scale Explanation Experiment (using𝐶𝑎𝑢𝑠𝑎𝑙𝑃𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐴): the Car LEC’s Abduction Module states that the
cause of a Slow car status (i.e. the car’s 𝑆𝑙𝑜𝑤 proposition is ‘true’) is the car in front of the car in question. Applying the
𝐴ℎ𝑒𝑎𝑑𝑂𝑓 predicate determines that the car in front is 𝑐𝑎𝑟419. Hence, the Spotlight forwards the correspondingly updated
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question to this car’s LEC (“𝑊ℎ𝑦 𝐶𝑎𝑟 (419) 𝑆𝑙𝑜𝑤 ()”). Thus, the explanatory process repeats recursively, identifying
all slow cars in the traffic chain, one by one, and forwarding the updated question to them. The process halts when
reaching 𝑐𝑎𝑟95, which is the first one in the jam. Its Abduction Module states (via 𝐶𝑎𝑢𝑠𝑎𝑙𝑃𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐶 ) that the cause
of the 𝑆𝑙𝑜𝑤 state is a𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙𝐹𝑎𝑖𝑙𝑢𝑟𝑒 . As this cause does not correspond to any predicate that can be handled by
the available LECs, the Spotlight halts the explanation and returns the list of causes identified so far (Fig. 3a).

Alternatively, in the Higher-Scale Explanation Experiment (using𝐶𝑎𝑢𝑠𝑎𝑙𝑃𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐵 ): the Car LEC’s Abduction Mod-
ule states that the cause of a Slow car status is the ‘jam’ containing the car in question. Applying the𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠𝐶𝑎𝑟 (422)
predicate identifies the corresponding 𝑗𝑎𝑚410. Fig. 3b depicts the explanation obtained so far. If the User further wishes
to find-out the reason for the identified jam, they may re-inquire the Spotlight (“𝑊ℎ𝑦 𝐽𝑎𝑚(410) 𝑆𝑙𝑜𝑤 ()”). The Spotlight
forwards the question to LEC of 𝑗𝑎𝑚410. The Jam LEC’s Abduction Module (𝐶𝑎𝑢𝑠𝑎𝑙𝑃𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐷 ) states that the cause
is the first car in the jam (i.e. 𝑐𝑎𝑟95). The Spotlight forwards the question to 𝑐𝑎𝑟95, which states that the cause is a
𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙𝐹𝑎𝑖𝑙𝑢𝑟𝑒 . The process ends and the sequence of causes is returned as explanation to the user (Cf. Fig. 3c).

(a) low-scale explanation: individual cars only

(b) higher-scale explanation: jam only

(c) higher-scale explanation: jam’s cause

Fig. 3. Explanation for a driver on why her car is slow: a) low-scale: long chain of individual cars moving slowly in front (more detailed,
complicated explanation); b) higher-scale: traffic jam in front (more abstract, simpler explanation); c) jam cause (hybrid)

These examples show how multi-scale explanations can adjust the level of detail for explanations provided to users.
Higher-scale explanations (using jams) provide shorter, more concise explanations; while lower-scale explanations
(using cars) provide longer, more detailed explanation.

5 CONCLUSIONS AND FUTURE RESEARCH

This position paper proposed to use multi-scale models as a means to generate multi-scale explanations about observed
systems. This multi-scale approach aims to deal with scalability and complexity issues when explanations target very
large systems. The key idea is to model systems via fewer higher-scale concepts, so as to replace, via abstraction, several
lower-scale concepts. Higher-scale models reduce the amount of system facts to consider when generating relevant
explanations; and also simplify explanations returned to users. As the appropriate scale for system modelling may vary
dynamically, we propose to use adaptive multi-scale models and associated explanatory processes that can adjust the
scales employed during runtime.
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We illustrated our proposal via a multi-scale simulation of urban traffic (implemented in NetLogo). We extended
an explanatory framework from previous work (i.e. D-CAS) to include multi-scale concepts for the traffic case. We
exemplified the system’s multi-scale explanatory process by asking a question about a slow car. Two alternative answers
were provided – a lower-scale one, considering all individual cars; and a higher-scale one, considering jams as aggregates
of several slow-moving cars. This illustrated how the higher-scale explanation was considerably shorter and simpler to
produce than the lower-scale one.

Future work will focus on determining the appropriate explanation scale for each question, within each given context;
and switching between scales automatically during runtime. Other aspects of the D-CAS framework will also be studied
to provide more advanced versions – e.g. automatic identification of higher-scale explanatory concepts and multi-scale
abduction methods. Initially, the Explanatory System can dispose of all alternative causal propositions and select among
them based on a given criteria. Such causal propositions can also be provided at runtime – e.g., when the modelling
system introduces the ‘jam’ concept to provide a higher-scale traffic representation, the Jam LEC can be automatically
included into the explanatory system and provide its alternative jam-based explanation.

An important criteria to select between multiple explanation scales will rely on the fact that the answer to a question
should resolve the conflict raised by that question, while featuring minimal complexity (e.g. as defined by Algorithmic
Information Theory). Intuitively, the explanation based on the jam is simpler than the one based on the chain of
individual slow-moving cars, because its description is shorter. Once the simplest explanation is given initially, the user
may require further details by asking more questions (e.g. ‘why is there a jam’ or ‘how long is the jam’). This proposal
sets a preliminary basis for developing more comprehensive multi-scale explanation solutions for large CPS.
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