
5.3 Goal-oriented Holonic Systems 223

straining the process. Agents directly or indirectly commit to certain actions

using a predefined protocol. Agents may join or form an organisation with

additional rules.

The norm change definition describes attributes, which are required for Nor-

mative Multi-Agent Systems [BPV09]. Ten guidelines for implementation

of norms in MAS are given. When norms are involved, agents need to make

decisions based on these norms. Rosaria et al. [CCD98] argue that agents

have to be able to violate norms to maintain autonomy. However, the utility

of certain actions may be lower due to sanctions.

According to [SC11], Normative Multi-Agent Systems can be divided into

five categories: norm creation, norm identification, norm spreading, norm en-

forcement, and network topology. Related approaches use Normative Multi-

Agent Systems for governance or task delegation in distributed systems

[Sin+13].

To detect the system state, we use social network analysis. All algorithms

used for this purpose can be found in [WF94]. A survey of different analysed

social networks was done by [New03].

5.3 Goal-oriented Holonic Systems

Ada Diaconescu

About this Section

Why do we need this section?

When the complexity of OC systems rises, special-purpose infrastructure and

mechanisms must be provided to deal with the ever-increasing system scale,

heterogeneity and frequency of internal and external changes. Engineering

solutions that function correctly for relatively small system scales, executing

within rather simple environments, may break as soon as the system’s inter-

nal and external complexity crosses a certain threshold. This section explores

the common design properties that can be observed in complex natural sys-

tems, justifies their criticality for system viability and robustness, and shows

how they can be adopted and applied for building complex artificial systems.

These properties are studied from both structural and procedural perspec-

tives.

224 5 Building Organic Computing Systems

The content in a nutshell

• Complexity@Runtime: Complex OC systems must deal with large

numbers of resources, increased diversity, frequent changes, multiple

goals and conflicts.

• Integration@Runtime: Complex OC systems must be able to (self-)

integrate resources discovered opportunistically, within their execution

context, in order to achieve stakeholder goals.

• Engineering support: Special-purpose engineering artefacts are needed

to support the development and maintenance of complex OC systems,

ranging from conceptual models and architectures (the focus of this sec-

tion), to concrete frameworks, platforms and tools (which require further

research).

• Goals@Runtime: Goals provide critical reference points for engineered

OC systems, which may undergo a wide range of changes, both inter-

nally and externally. A system’s goals may also change, hence updating

the reference points.

• Holonic systems: Complex natural systems feature recursively-

encapsulated hierarchical structures. Holons are composed of sub-

holons and included into supra-holons, recursively. Holons posses sev-

eral key properties, such as semi-isolation among holons, abstraction

of a holon’s internals with respect to external observers and users, and,

suitable time-tuning among self-* processes.

• Goal-oriented holonics: To manage complexity, OC systems must

be endowed with goal-oriented (self-)integration processes, organised

within a holonic structure that preserves the holonic properties of semi-

isolation, abstraction and progressive reactivity of self-* functions.

Who should read it?

This section is intended for readers interested in better understanding, de-

veloping and/or administering complex OC systems, including sub-activities

such as system modelling, analysis, design, evaluation and adaptation. Be-

fore reading this section it is preferable to acquire some familiarity with the

development of single and collective OC systems, which are context-aware,

self-adaptive and self-organising, as discussed in the previous Sections 5.1

and 5.2, respectively.

5.3 Goal-oriented Holonic Systems 225

5.3.1 Introduction and Motivation

Previous sections of this chapter focused on building single context-aware adaptive

systems (Section 5.1) and collective socially-aware systems (Section 5.2), respec-

tively. As such systems grow larger, more distributed, highly heterogeneous and

dynamic, system engineers and administrators must also deal with non-functional

properties such as scalability, support for diversity, detection and resolution of con-

flicting goals, and the ability to cope with openness and with a certain degree of

unpredictable change.

To achieve this, designers and managers must be able to (re)integrate simpler

and smaller-scale self-* systems, subsystems and components, into larger-scale, in-

creasingly complex systems-of-systems; rather than (re)building them from scratch

each time. Also, ideally, the system (re)integration process would be carried-out dy-

namically and by the system itself; rather than performed offline and manually. This

kind of OC system would aim to self-(re)integrate available resources, discovered

opportunistically, for achieving its goals, whenever it detects a change in its internal

resources, external context, or goals pursued.

Similar challenges occur when different OC systems, potentially belonging to

different authorities, are designed separately, in order to achieve different purposes,

and subsequently end-up executing in shared environments, where they interfere

with each other in unforeseen ways [Tom+16]. Here, dynamic system integration

is no longer a design choice for dealing with system complexity, but rather a de

facto situation that raises complex challenges to be dealt with, such as contention

for resources or conflicting actions on shared resources. From a design perspective,

the difference between the two situations – purposeful and accidental system inte-

gration – is mostly related to an external actor’s ‘intention’. Importantly, both cases

raise the same challenges mentioned above, which can be dealt with via the same

infrastructure and mechanisms.

To facilitate, or even to make possible, the engineering of complex self-integrating

OC systems, it is necessary to first provide conceptual models and generic architec-

tures that can support the design processes of such systems. Such models represent

a stepping stone towards more concrete and domain-specific engineering artefacts,

such as development methodologies, frameworks and tools, which embed essential

expertise into reusable platforms, and thus enable less experienced professionals to

develop complex OC systems.

This section focuses on presenting such a conceptual architectural model for en-

abling the self-integration of complex OC systems from simpler self-* subsystems

and components. The conceptual model relies on a core paradigm – goal-oriented

holonics – in order to address two important issues. Firstly, it deals with the sys-

tem’s necessity to achieve measurable objectives – by defining system goals ex-

plicitly (Subsection 5.3.3). Secondly, it deals with the system’s necessity to achieve

its goals while ensuring scalability, capitalising on diversity, and coping with high-

frequency changes – by structuring the system according to holonic principles (Sub-

section 5.3.4).

226 5 Building Organic Computing Systems

The section is organised as follows. Subsection 5.3.2 identifies the main chal-

lenges to be addressed and the key requirements to be met when modelling, de-

veloping and managing complex OC systems. Subsection 5.3.3 discusses the es-

sential role that goals play when modelling and (self-)integrating self-* systems.

It then proposes a conceptual architecture for goal-oriented (self-)integrating sys-

tems, provides a generic formalism for goal definitions, and highlights the main

inner workings of a goal-resolution process, including conflict management. To

help system (self-)integration as complexity increases, Subsection 5.3.4 identifies

some of the key structural and behavioural properties of natural holonic systems

(see Subsection 3.3.3) that seem to ensure their viability and survivability within

complex competitive environments. The aim here is to then propose these proper-

ties as reusable design principles for complex OC systems. Subsection 5.3.5 merges

the goal-oriented system models with the holonic design principles, and proposes

a novel design paradigm – goal-oriented holonics – for multi-level self-integrating

systems. A series of examples from the smart micro-grid domain illustrate the use

of goal-oriented holonics for designing OC systems at increasing complexity levels.

Finally, Subsection 5.3.6 summarises the main concepts introduced and concludes

the section.

5.3.2 Challenges and Requirements for Complex Organic Systems

This subsection identifies the key challenges to be addressed when building and

maintaining complex OC systems, as well as the essential characteristics of the sys-

tem (self-)integration processes that can help to deal with such challenges.

It is worth noting here that the purpose of any such engineered systems is to

achieve stakeholder goals. Here, stakeholder is a broad term used to include human

developers, owners, users, administrators and other systems – in other words, any

entity with some interest and authority over the system in question. Please note that

for autonomous systems the stakeholder can also be the system itself, in which case

we consider that the system itself sets some self-goals. The notion of goal is further

developed in the next subsection (Subsection 5.3.3).

In short, engineering solutions for (self-)integrating OC systems that feature in-

creasing complexity must meet additional key requirements, including: scalability;

suitable balance between diversity and non-interference of subsystems; abstract de-

scription of relevant state-related and behavioural features of subsystems; detection

and resolution of multi-goal conflicts; and, careful time-tuning of integrated self-*

processes. We further discuss each of these challenges next. Subsection 5.3.5 shows

how the generic design paradigm of goal-oriented holonics can contribute to ad-

dressing these challenges.

Scalability – manageable complexity from reusable simplicity. As the com-

plexity of OC systems increases, the system development processes are, on the

one hand, increasingly based on the (re)integration of existing subsystems, and, on

5.3 Goal-oriented Holonic Systems 227

the other hand, increasingly pushed into the runtime, when adaptation to frequent

changes is needed. For simplicity, in the following, we will use the term integration

broadly, to include both offline and online integration, as well as manual and auto-

matic integration; specific usages will become clear from the context or by explicit

specification, as needed.

One important question when integrating complex systems is how to find the

right combination of primitive system components that will achieve stakeholder

goals, in a given context? One option is to follow a trial-and-error technique and

to explore all possible combinations of compatible components until finding the op-

timal one that fulfils the goals. While feasible in principle, such an approach quickly

leads to a combinatorial explosion of possibilities when integrating large systems.

Scalability becomes a critical issue in such cases.

The ability to learn from past experiences and to reuse pre-integrated compo-

nents that have already proven successful becomes essential in addressing this is-

sue. Hence, rather than only integrating basic components, the system must also be

able to reuse pre-integrated subsystems, which can achieve relevant sub-goals, and

to integrate these in order to achieve global goals. This implies, among others, the

ability to integrate existing self-* systems (like the ones discussed in sections 5.1

and 5.2, respectively). This approach may not find the optimal system integration

configuration, yet it is able to find ‘satisficing’ solutions – meaning, good-enough

solutions found in limited time, even at large scales. Importantly, this helps to ad-

dress the limited rationality problem, which basically stems from the combinatorial

explosion of alternatives, as identified by H. Simon in his book on “The Science of

the Artificial” [Sim96] (discussed in Section 3.3).

For example, when building an OC system that must achieve two goals simul-

taneously, it may be easier and faster to integrate two separate OC subsystems,

each one able to achieve one of the goals, and, if necessary, to add special-purpose

conflict-resolution components; rather than to start from scratch and to assemble ba-

sic components until finding the exact combination that meets the two goals, without

conflict. Furthermore, the first option also provides more flexibility with respect to

future adaptations, where the two subsystems might have to be reused separately,

or to be re-integrated differently, in order to consider different goal priorities or to

meet an additional goal.

Diversity for reusability, adaptability and robustness. If systems are built by

integrating existing subsystems, their overall architecture and control processes can-

not be designed starting from a clean slate. Instead, integrated systems must be able

to support the interconnection and co-existence of diverse subsystems, with spe-

cific architectures, control policies, self-* processes, configurations and technolo-

gies. Moreover, such diversity of subsystemtems may actually become necessary

and beneficial to the overall system. This is both in terms of optimisation – since

each subsystemtem executes in a different local context, with different environmen-

tal constraints, historical preferences and limitations; and of robustness – since the

system may evolve in unpredictable environments, where a broader range of alter-

native approaches, as implemented by diverse subsystems, offers a better chance

228 5 Building Organic Computing Systems

of dealing with unforeseen conditions, like internal and external disturbances (see

Section 4.4 on robustness).

Minimising interference and resolving conflicts. Integrating diverse subsys-

tems risks to create interference, or conflict, among them. This means that subsys-

tems that can achieve their objectives in isolation, may disturb each-other when

coupled too tightly, and so no longer fulfil their objectives in the integrated system

[Kep+17].

One category of solutions possible here are based on various types of coordina-

tion among the subsystems concerned – e.g. higher-level centralised control, peer-

to-peer coordination, or hybrid solutions.

When the number of interfering systems increases dramatically, this type of solu-

tions may reach a scalability limit. This is also exacerbated if systems join or leave

the shared environment dynamically, and each subsystem self-adapts over time. To

enable further scalability, collectives of well-integrated OC systems may have to

be partially isolated from each-other, so as to allow necessary communication while

avoiding detrimental interference. This also minimises one subsystem’s dependence

on the others (i.e. loose coupling), which is essential for maintaining system flex-

ibility, robustness and adaptability. Minimising interference among (collectives of)

OC subsystems facilitates their reuse within different higher-level integration con-

figurations and hence helps scalability, as discussed above.

Abstracting system descriptions. As soon as subsystems are successfully inte-

grated into a coherent system, which can achieve well-defined goals, the new system

can, in turn, also be integrated with other systems, into an even larger-scale system-

of-systems, which can achieve higher-level goals. When this process extends to sev-

eral integration and abstraction levels, recursively, it can become difficult to achieve

coherence and meet goals, while keeping track of the details of design, implemen-

tation and configuration of all integrated systems, subsystems and components.

To keep complexity under control – with respect to an external observer’s ability

to model, analyse, understand and control the system – each system level should

be describable via a specific set of abstractions. Such external observer may be a

human developer, administrator or user; another organic system; or a higher level of

the same organic system. In other words, each subsystem should be able to provide

a useful abstraction, modelling its state and behaviour, and providing sufficient in-

formation to allow the subsystem to be integrated into a higher-level system. Such

modelling abstractions include the system’s goals, both in terms of goals pursued by

the system and goals required from other systems. They also include the evaluation

of the system’s state and behaviour with respect to the achievement of such goals.

Other abstractions can describe the system’s negotiation capabilities, self-awareness

levels [Lew+17], self-* functions [LMD13], and so on.

Time-tuning self-* processes. When integrating several self-* subsystems, spe-

cial attention must be given to the overall dynamics of the integrated system, in

terms of the synchronisation (or timing) of its own self-* (sub-)processes, in order

to avoid unwanted oscillations and divergent phenomena, which may occur across

several integrated abstraction levels and/or subsystems. More generally, the way in

5.3 Goal-oriented Holonic Systems 229

which lower-level self-* processes influence and interfere with higher-level self-*

processes; and, conversely, the way in which self-* processes at higher levels feed-

back into lower-level self-* processes, must be carefully studied and tuned.

Fig. 5.17: Generic view of the smart home and grid example. Note that the OC

House Manager needs not be centralised.

Example: Smart Home and Smart Microgrid

We illustrate the conceptual model introduced here via a case study from the

smart home and smart micro-grid domain (Fig. 5.17).

In short, smart houses within a neighbourhood are equipped with energy

producing and consuming devices, or prosumers – e.g. thermostats, lamps,

solar panels and batteries. Devices are endowed with self-* processes that

enable them to reach simple goals – e.g. temperature, luminosity, or power

prosumption. Smart houses are equipped with controllers that coordinate

their devices, in order to achieve higher-level goals, such as comfort and

power prosumption targets. Smart houses are connected to a smart micro-

grid, which must balance power prosumption, avoid peaks, and compensate

for any imbalances by prosuming from the main grid.

We use this case study as a running example to illustrate concepts intro-

duced throughout this section (Subsection 5.3.3, Subsection 5.3.4, Subsec-

tion 5.3.5). We then provide several concrete use cases that show how these

concepts come together into integrated engineering solutions for OC systems

with increasing degrees of complexity (Subsection 5.3.5).

230 5 Building Organic Computing Systems

For now, let us just briefly illustrate the requirements above via a simple ex-

ample. Within a smart house, we have a smart window that opens and closes

automatically to maintain air freshness within a room. Additionally, we have

a thermostat that switches an electric heater on and off, in order to maintain

room temperature, while minimising power consumption. While the two de-

vices work well independently, when placed within the same room they may

interfere with each other, hence causing a conflict – e.g. on a cold day, the

window may open, in order to air the room, causing the thermostat to strug-

gle to keep-up indoor temperature, while increasing power consumption.

One way to resolve this conflict is to somehow coordinate the actions of the

thermostat and the smart window. This may be achieved by introducing a

centralised controller; or, by giving the thermostat control over the window;

or, via direct negotiations between the thermostat and the window; or, by

giving the window access to temperature sensors and rendering it sensitive

to the temperature objective.

Additionally, on a warm day, the thermostat may use the window as a way to

heat the room without consuming electricity. Here, diversity of solutions for

reaching the temperature goal help optimise the power consumption goal.

In case of a blackout, it would also help pursue the temperature goal, by

controlling the windowing based on the weather.

At a higher scale, like the entire house, the solution above is reused, by

having well-coordinated thermostats and smart windows placed in different

rooms. Conveniently enough, this provides a straightforward way to limit in-

terference among such well-coordinated device collectives, since heat trans-

fer between rooms is slower and smoother (than within a single room).

This situation has two important consequences. Firstly, in most cases, the

smart devices in one room only perceive the aggregated effects on the local

temperature resulting from the actions of devices in other rooms – i.e. ab-

straction. Secondly, the smart devices in one room impact and hence react

faster to temperature changes in that room (leading to faster control cycles

within each room) than to impacts that devices in other rooms have on the

same temperature (leading to slower control cycles across rooms) – i.e. time-

tuning of self-* processes.

Achieving the above requirements – replication, diversity, abstraction, lim-

ited interference, conflict resolution and time-tuning among self-* processes

– means that the well-coordinated collective of thermostats and windows can

be instantiated, in principle, across any number of semi-isolated enclosures,

hence scaling to large surfaces and various dynamic changes.

5.3 Goal-oriented Holonic Systems 231

5.3.3 Goals as Reference Points in Organic Systems

This section discusses the key role of explicit goal definitions for the (self-)inte-

grating processes of complex OC systems and proposes a generic design for goal-

oriented OC entities. It then introduces high-level goal specifications, transforma-

tions and resolution within OC systems, which can be applied and refined across

a wide variety of OC systems. It also discusses issues related to interference and

conflicts in multi-goal systems. Later on, Subsection 5.3.5 shows the importance

of goals in the modelling of interactions among highly diverse subsystems that are

(self-)integrated opportunistically.

GOALS AS REFERENCE POINTS IN A WORLD OF CHANGE

When everything within and without an OC system may change, from its internal

resources and integration architecture to its external environment, we need to set a

reference point for the system. Indeed, if a system can self-adapt or self-organise,

then what does it do this for? when does it start and stop such processes? and, how

does one know whether or not it was successful? In engineered systems, we argue

that this reference point is the stakeholder’s goals for that system.

Therefore, goals are first class elements in the conceptual model defined here.

This simply means that goals are key notions at the model’s abstraction level. For

this, firstly, goals need to be defined more clearly (goal specification); and secondly,

a method must be provided for achieving them (goal resolution).

Goal specifications have been studied extensively in Software Engineering (SE)

to define system requirements [Lam01], [Yu+11], provided and required services,

or component interfaces; in Multi-Agent Systems (MAS) to define agent objectives

[JDT11]; or, in Artificial Intelligence (AI) to define problems to solve [LB01]. Here,

we converge the goal concepts from these areas and propose the following informal

high-level definition (reproduced from [Dia+16]).

A goal is an evaluable property that should be achieved, or a verifiable state-

ment that can be deemed true (or not), of a state or behaviour of a system under

consideration.

Goals can be defined at different abstraction levels, from high-level statements

(e.g. functional or qualitative services, economic targets, social values, constraints,

policies, rules and norms) to low-level specifications and ultimately actions (e.g.

technical requirements, plans, architectural styles, commands and method calls).

Hence, the term goal is here an umbrella label to include a variety of concerns,

signifying anything that the system’s stakeholder cares about - i.e. the system’s ‘rai-

son d’être’. Since goals can be made more or less obligatory (e.g. via sanctions or

incentives), they can be used to model all forms of action guidance (Section 5.2).

To achieve a high-level goal, an OC system must transform it, progressively, into

lower-level goals, and finally into actions performed onto actual resources. This goal

resolution process is further discussed later in this section.

232 5 Building Organic Computing Systems

Example: Smart Home and Smart Microgrid (continued)

Referring to the smart micro-grid case study (introduced in Subsec-

tion 5.3.2), goal examples may include: the grid owner’s profit targets; the

grid manager’s safe grid operation; the home owners’ comfort, safety, low

electricity bill and fairness requirements in terms of prosumption distribu-

tion; the smart home controllers’ provided services, security, and prosump-

tion constraints; the thermostats’ temperature; or the lamps’ luminosity tar-

gets.

We will later see how we can more formally define these goals and the in-

terrelations among them.

In contrast to engineered systems, natural systems appear to have as their de-

fault goal that of their very existence, survival, and derived sub-goals. This default

motivation can also occur in some emergent socio-technical systems, which self-

organise progressively, over time, by adding individually-motivated links between

pre-existing systems, with no prior global purpose. This may be the case, for in-

stance, in systems like global markets or social networks, which behave as systems

and have consequent global effects, yet without having been constructed by a par-

ticular stakeholder aiming to obtain these effects.

CONCEPTUAL ARCHITECTURE OF GOAL-ORIENTED ENTITIES

Fig. 5.18 offers a generic view of a goal-oriented entity – which, for simplicity, we

also refer to as a Goal-oriented Thing (GoT6). Fig. 5.19 indicates that a GoT may be

able to provide and require multiple goals, yet, at any one time, it may only activate

a subset of these goals (details below). Fig. 5.20 then shows how such goal-oriented

entities (GoTs) can be integrated with one another to form systems, which can in

turn be integrated into systems-of-systems, recursively – which we also refer to as

Goal-oriented Things-of-Things (GoTT). Each goal and its evaluation is depicted

explicitly, via a dedicated input and output port – this is an abstract notation and

implies nothing about the goal’s actual definition.

We refer here to an entity, or thing, very generally, to include a broad range of

types, with very diverse capabilities and complexity levels: an entire complex OC

system, with many stakeholders, goals, self-* functions and components; or, a single

system part, implementing a single control loop; or, a ‘traditional’ component with

no self-* capabilities; or, an intelligent self-aware agent; or, a human actor; an entire

6 GoT: term and acronym inspired from the Internet of Things (IoT), to emphasise the fact that any

engineered artefact should have a well-defined goal, and that its known or predicted side-effects

should also be identified and documented as unintended goals.

5.3 Goal-oriented Holonic Systems 233

Fig. 5.18: Generic architecture of a goal-oriented entity – or Goal-oriented Thing

(GoT)

Fig. 5.19: Generic architecture of a multi-goal entity

human organisation; or, any combinations of the above. This architectural view is

sufficiently generic to represent the entire range of such entity types. Based on this

basic design, an engineered goal-oriented system is a composition of (sub-)systems

that fit this design.

Let us now take a closer look at the various types of goal and evaluation ports,

their significance and their interrelations, both within one GoT and among several

GoTs. Each GoT has a set of provided goals, which it can pursue, and a set of

required goals, which it needs from other GoTs, in order to reach its provided goals.

When a GoT activates one of its provided goals, as required by a stakeholder, this

goal becomes a target goal for that GoT. The GoT must then resolve the target goal,

by finding the actions to perform on internal resources and the required goals to

234 5 Building Organic Computing Systems

Fig. 5.20: Generic architecture of a goal-oriented system-of-systems – or Goal-

oriented Things-of-Things (GoTT)

activate so as to demand goals from external GoTs. Activated required goals become

cause goals since they can cause the achievement of the target goals. For each of its

cause goals, a GoT must find a match in one of the provided goals of another GoT,

which, if it accepts the request, activates its provided goal and makes it a target

goal. GoT integration is performed in this manner, progressively. Fig. 5.19 shows

how each GoT can provide and require multiple goals, from which only a subset are

activated and hence become target goals and cause goals, respectively.

This approach is similar to the manner in which integration is performed among

objects (in Object Oriented Programming (OOP), such as Java or C++), components

(in Component-Oriented Software (COS) [Szy97], such as CORBA Components

Model7, Fractal8 or Java EE EJBs9) and services (in Service-Oriented Architectures

(SOA) such as Web Services10, Spring11, or iPOJO12), possibly at runtime, based on

their provided and required interfaces. A typical solution to support dynamic bind-

ing among such entities is to publish provider entities in well-known repositories

where they can be searched for, found, and bound to by client entities, at runtime.

These cases are totally compatible with our model, where such interfaces represent

a type of low-level goal to be achieved or required by the GoTs in question, which

may, amongst others, be implemented via objects, components or services. Finally,

while in most of the above technologies all required interfaces are either compul-

sory or optional, GoTs can be more flexible, in that they can rely on different subsets

of their required sub-goals for achieving their target goals.

Also similar, in Multi-Agent Systems (MAS), agents can find and coordinate

with each other, at runtime, based on the tasks they require and provide. The Con-

tract Net Protocol (CNP) [Smi80] is a seminal example for implementing this ap-

proach. Here, agents can break composite tasks into sub-tasks, advertise these to the

other agents, collect bids from the ‘interested’ agents and decide on sub-task assig-

nations. More generally, many problem-solving approaches rely on back-tracking

7 CORBA Component Model (CCM): http://www.omg.org/spec/CCM/
8 Fractal Project: http://fractal.ow2.org/
9 http://www.oracle.com/technetwork/java/javaee/ejb/index.html
10 https://www.w3.org/TR/ws-arch/
11 https://spring.io
12 https://felix.apache.org/documentation/subprojects/apache-felix-ipojo.html

5.3 Goal-oriented Holonic Systems 235

strategies that split higher-level problems (or queries) into sub-problems (or sub-

queries) recursively, until solutions (or facts) are found to the leaf problems (e.g.

Prolog logic programming language, or Problem Posing Interpretation for pro-

gramming languages [LB99]). Finally, also from the MAS domain, the BDI model

[RG91] (Section 9.7) is similar to the proposed approach, with beliefs mapping to

knowledge, desires to target goals and intentions to internal actions or cause goals.

For each provided goal, a GoT also provides a means of evaluation for that goal

– i.e. provided evaluation. Hence, stakeholders can determine, via such provided

evaluation, the extent to which the target goal that they required from a GoT has

been attained. Similarly, there is a means of evaluation for each required goal – i.e.

required evaluation. Hence, a GoT can estimate via a required evaluation the degree

to which the cause goals that it required from other GoTs have been attained.

This generic design focuses on the goal-related port types and the correspond-

ing evaluation-related port types of system entities – hence the Goal-oriented Thing

(GoT) labelling. This is because goals have been identified as a key element for

enabling system (self-)integration, by matching the provided and required goals of

various GoTs, as discussed above. However, this does not limit the port types of a

GoT to goal-related ones. Additional port types may include ports for context mon-

itoring, for inter-GoT negotiations, or for the acceptance/entrance and exclusion/de-

parture of composing sub-GoTs (when forming a Goal-oriented Thing of Things, or

GoTT).

This generic architecture represents an extension of the observer/controller (O/C)

architecture (Section 5.1). This extension aims to support the explicit definition of

goal- and evaluation-oriented interfaces13. The aim is to go beyond the ability to

self-manage a production system, via observation and control, and to capitalise on

these functionalities to also enable the (self-)integration of complex OC systems-of-

systems. For simplicity, in the following, we sometimes refer to the main composing

entity as a system, possibly made of subsystems, and part of larger systems-of-

systems.

The process of achieving a target goal – referred to as goal resolution – has to

be determined at runtime. Goal resolution can take two forms (or a combination

thereof). Firstly, a GoT can achieve its target goal by performing actions on its in-

ternal resources – i.e. internal action. This includes requiring sub-goals from its

composing sub-GoTs, if available. Secondly, a GoT can achieve its target goal by

requiring sub-goals from external GoTs – i.e. external action. These, in turn, may re-

quire further sub-goals from yet other GoTs, and so on. In such cases, the resolution

of a stakeholder goal relies on the goal-oriented integration process among GoTs,

based on the matching of their respective required and provided goals. This goal-

oriented integration process, both internal and external, leads to the formation of a

system-of-systems, or GoTT, that achieves the stakeholder goal. Subsequent eval-

uation results may re-trigger the same integration process, in order to change the

13 It is important to understand that the single context-aware system as introduced in section 5.1

necessarily has goals as well; but those are not made explicit and, hence, cannot be changed at

runtime by an external entity. Those goals are implicit and distributed, e.g. in the form of the

reward assignment on level 1, or the optimisation objective function on level 2.

236 5 Building Organic Computing Systems

GoTT composition, e.g., to replace sub-GoTs that fail to achieve targeted sub-goals.

When GoTs are autonomous, or self-aware, they may refuse to accept requests for

their provided goals, or only accept them partially (negotiation needed) – e.g. due

to lack of sufficient resources, or of satisfactory remuneration.

Example: Smart Home and Smart Microgrid (continued)

A smart house controller achieves the home owner’s comfort goal by requir-

ing sub-goals (or services) from smart devices, such as thermostats (tem-

perature range), lamps (light ambiance) and multimedia devices (visual and

sound ambiance). In turn, a thermostat may achieve its provided tempera-

ture goal by requiring further sub-goals (services) from an electric heater

(heat production) and a thermometer (temperature measurement). Hence,

the overall smart home is a system-of-systems (i.e., GoTT) composed of the

main controller and all smart devices, which discover each other dynami-

cally, then provide and require goals from each other.

The (self-)process that integrates (and disintegrates) these subsystems into a sys-

tem composition that fulfils the stakeholders’ target goals is composed of the sub-

processes for achieving the target sub-goals of the subsystems involved. These sub-

processes typically run in parallel. Each resolution process aims to minimise the

difference between its evaluation and its target goals, by requiring and evaluating

cause goals from other subsystems, selected at runtime. This, of course, assumes

that (sub-)systems are trustworthy, meaning that they do their best to achieve the

goals. When dealing with intelligent or self-aware systems [Kou+17b], or in open

environments with unknown resources, this assumption may no longer hold (e.g.

[Kan+16]). This possibility further complicates goal resolution processes.

Depending on the type and complexity of the system, or entity, involved, such

internal resolution processes can range from ‘traditional’ computations with no self-

* capabilities, through basic reflexes (with/out self-learning), and to intelligent and

self-aware agent processes (based on knowledge-acquisition, reasoning and/or plan-

ning), or humans in the loop. Also, subsystems can be interconnected via various

organisation patterns – e.g. hierarchy (Section 3.3), peer-to-peer, or stigmergy) –

and/or various types of relations – e.g. cooperation, competition, parasitism, sym-

biosis or ignorance (please refer to [Dia+17] for a more detailed discussion of such

collective options). This variety does not change the nature of the goal resolution

process, only its efficiency, and hence can be modelled via a single abstraction.

5.3 Goal-oriented Holonic Systems 237

DEFINING GOALS IN A WORLD OF CHANGE

At the level of abstraction of interest here, goals should be well-defined yet minimal.

This means that goal definitions should specify precisely what the stakeholder wants

to achieve; and not more. Such goal definition focuses on what to achieve rather

than how, and leaves maximal flexibility to the (self-*) subsystems and their (self-

)integration processes.

To make an analogy with Object Oriented (OO) programming, the goal concept

discussed here is similar to that of an object interface. In OO, an interface defines

what methods are provided by the objects that implement it, and does not define

how these methods are provided. This abstraction serves, among others, to help

specify object functionalities and to find compatible objects that can be integrated,

via interface matching. When an object uses another object via its interface, then

this interface becomes a sort of a contract between the two objects, specifying: for

the requesting object, what methods can be called and how to access them; and, for

the providing object, what methods it must provide and how they can be called. The

actual method implementations are separated from their definitions in the interfaces.

They are specified within the classes of objects that implement these interfaces, al-

lowing for different method implementations to be defined in different classes. Be-

yond this abstract concept of an interface, the exact formalism via which interfaces

are defined depends on the programming language, such as C++ or Java. Also, the

actual manner in which methods are defined depends on the developed application,

and will be different for e-banking and online chatting systems for instance.

Similarly to the interface abstraction, the goal concept as employed here serves

to define, at a high abstraction level, system capabilities and requirements in a way

that can be used to assess the system’s integration compatibility with other systems

and to evaluate the efficiency of such integrations. Just as with object interfaces, the

exact manner in which such goals are specified will highly depend on the specific

application domain and formal language used.

Beyond low-level interface definitions, many formalisms exist for higher-level

goal specifications, including modelling languages for agent intentions, abilities,

commitments, or desires, such as i* [Yu+11]; requirement engineering models, such

as Kaos/Objectiver from Respect-IT14; objective specification standards, such as

the IEEE-Std-830/1993 standards; rules, policies, constraint-oriented languages; or

domain-specific formalisms, such as [DDL12]. All such formalisms can be seen as

refinements with respect to the abstract goal model discussed here.

Let us now identify those generic elements that should be present in all goal

definitions, irrespectively of their particular formalism and application-dependent

specificities. Generally, a goal definition should comprise at least three elements

([Fre+15] for details): G = (Vf ;SR;ST), defined as follows:

• Vf is a viability function, which encapsulates both what to achieve and its eval-

uation criteria;

14 Respect-IT: Requirements Engineering & Specification Techniques for IT

238 5 Building Organic Computing Systems

• SR is a resource scope, indicating where to achieve it, and hence over which set

of resources is Vf defined and evaluated;

• ST is a time scope, indicating when to achieve it, and hence over which periods

is Vf evaluated.

Example: Smart Home and Smart Microgrid (continued)

A thermostat’s goal can be defined as:

GT = (20◦C− 23◦C;homeH ;7pm− 9pm daily). This means that the ther-

mostat’s viability temperature Vf is defined between 20◦C and 23◦C and its

evaluation function determines the distance between temperature measures

and this targeted interval. It also means that the thermostat’s Vf is assessed

within a home (SR = H) at specified intervals (ST = every day between 7pm

and 9pm).

Note that a viability function Vf could return a binary value, a utility mea-

sure, or other semantics, such as ‘too hot’ or ‘too cold’ in this thermostat

example.

Additional attributes may be included in the goal definition, such as goal prior-

ities, in order to help resolve conflicting goals; or rewards and sanctions, in order

to help deal with goal-aware systems that can choose to pursue a goal or not. Many

goal formalisms also include goal dependencies, or links, in order to define, for

instance, the positive or negative contribution of goals upon other goals; logical op-

erations, such as AND, OR, or XOR, among goal links; or other goal-correlation

link types, in order to express that goals can satisfy, deny, be dependent upon, or in

conflict with, other goals [Lam01]. Moreover, dedicated formalisms are available to

indicate the relations between goals and the entities that fulfil them, such as a goal’s

fulfilment by a particular agent, or agent collective.

Such goal-correlation specifications are compatible with the general model intro-

duced here, yet should be separated from the stakeholder’s goal specifications and

determined at runtime instead, via the goal resolution process. Hence, target goals

are defined by human stakeholders, while cause goals are derived from these – either

automatically or via human intervention; directly or via trial-and-error; top-down or

bottom-up, or both.

RESOLVING GOALS IN A WORLD OF CHANGE

For each system (GoT), resolving its target goal(s) GT implies, in short:

1. Identifying the cause goals GC that lead to the target goal(s) GT . As discussed

before, these can be internal or external goals, or actions. GC may be achieved

5.3 Goal-oriented Holonic Systems 239

in whatever order in time, or may be part of a sequenced plan for achieving GT .

If GC cannot be found, then return to the higher-level stakeholder that issued

GT and indicate the incapability to fulfil GT ; optionally explaining the asso-

ciated reasons, suggesting necessary actions, or re-negotiating GT . Otherwise,

continue with the following steps for the identified GC;

2. Finding systems (internal or external GoTs) that provide these cause goals GC,

and sending them goal requests, until finding systems that accept to fulfil GC;

3. Negotiating or estimating some time for the providing systems to fulfil GC, then

waiting for that time;

4. Evaluating GC as provided by the systems that accepted to pursue GC (and going

to step 2 if they fail to provide); and

5. Evaluating the extent to which the achievement of the cause goals GC actually

leads to the achievement of the target goals GT ; and going back to Step 1 if

failure.

The above processes are propagated recursively, each step identifying further

cause goals and the systems that can resolve them. Each system resolves its tar-

get goals either by its own means (internal actions on internal resources, or cause

goals for sub-GoTs) or by transforming them into further cause goals for other sys-

tems (external actions or cause goals for external GoTs); or both (partial internal

and partial external actions or cause goals). Hence, within a system-of-systems, or

GoTT, the goal resolution process can propagate both horizontally, among GoTs at

the same composition level; and vertically, among GoTs at subsequent composition

levels (where a GoT maps its target goals to cause goals that are provided by its

composing sub-GoTs, which may do the same with respect to their sub-sub-GoTs,

recursively; until actual actions are executed on basic resources).

This process may be implemented via various techniques, yet at the level of ab-

straction of interest here we merely focus on the goal transformation types that

occur as systems achieve target goals collectively via mutual cause goal requests.

We identify two basic goal transformations, and respective reverse-transformations:

• translation, and inverse-translation: changing the type of one or more of a goal’s

defining elements – Vf , SR or ST ;

• splitting and composition: changing the value of one or more of a goal’s defining

elements – Vf , SR or ST .

Often, both translation and splitting operations occur simultaneously during a

goal’s resolution process. They basically map, or transform, target goal(s) into cause

goal(s), by changing their semantics and/or values. The resulting cause goals may

or may not be inter-related with respect to the points in time when they must be

achieved. For instance, when the translation process of a target goal relies on plan-

ning, the resulting cause goals are typically inter-related in time – e.g. one cause goal

must be achieved before another one can be pursued (planning is a broad subject in

itself, and out of the scope of this section; for an example of distributed hierarchical

planning please refer to [NWH02]).

240 5 Building Organic Computing Systems

Example: Smart Home and Smart Microgrid (continued)

Goal translation: A thermostat’s temperature target can be translated into

an electric heater’s power configuration – hence translating the thermostat’s

viability function (Vf). A generic resource scope (SR) specified as ‘all heat-

producing devices within a house H’ can be translated into ‘the set of elec-

tric heaters and air conditioning devices available in H’. A broad time scope

(ST) of ‘forever’ can be translated into ‘daily’ or ‘hourly’.

Goal splitting: A thermostat’s temperature goal can have its resource scope

(SR) defined initially over an entire house H, and split subsequently into

several temperature goals, with the same viability temperature Vf , and with

reduced resource scopes (SR′) representing different parts of the house. Sim-

ilarly, the time scope (ST) can be defined initially from 7pm to 9pm daily

and split subsequently into two daily intervals, such as ST1 between 7pm

and 8pm, and ST2 between 8pm and 9pm.

Simultaneous goal translation and splitting: A thermostat’s temperature

goal can have its resource scope (SR) defined initially as ‘all heat-regulating

devices’ and translated and split simultaneously into two resource scopes

SR1 = ‘all heaters’ and SR2 = ‘all air conditioning devices’.

GOAL RESOLUTION WITHIN AN OC SYSTEM

Let us now take a more detailed look into how an observer/controller (O/C) system,

such as the one depicted in Fig. 5.19, may implement the goal resolution process,

based on the concepts introduced so far in this section.

When an external stakeholder R sends a request to an OC system S for one of

its provided goals GP, the system S proceeds as follows, based on its Observer (SO)

and Controller (SC) functions:

1. The Controller SC decides whether or not to accept R’s request for pursuing GP.

This decision is based on the OC system’s (S) current state, including current

target goals and available resources; and perhaps on non-technical considera-

tions, such as remuneration or reputation gains. If SC accepts the request, then

it activates the provided goal GP which then becomes a target goal GT .

2. The Controller SC resolves GT in the sense that it maps it to the set of cause

goals GC – via various translation and/or splitting operations (Subsection 5.3.3);

3. The Controller SC finds a set of systems PGC that provide the cause goals GC

and requests them to provide GC; if they accept, then the system S binds to these

systems PGC (i.e. dynamic self-integration). Note that the providing systems PGC

can be resources of a production system, in which case GC are actually actions

to be performed on those resources; this does not change the general process.

5.3 Goal-oriented Holonic Systems 241

For simplicity, we assume a single cause goal in GC and a single providing

system in PGC.

4. The Observer SO evaluates GC as provided by PGC and forwards the result to

the Controller SC. If the evaluation is positive, then SC sends positive feedback,

potentially including a reward, to PGC. If the evaluation is negative, then SC

sends negative feedback, including a penalty, to PGC; or, renegotiates GC with

PGC; or, unbinds from PGC and finds alternative providers P′GC for GC (redoing

step 3).

5. The Observer SO evaluates the extent to which the target goal GT is achieved

and forwards the result to SC; SO also provides an aggregate evaluation of GT for

R. If the evaluation of GT is negative despite GC being provided successfully,

then SC remaps GT to G′C (going back to step 2).

6. The stakeholder R may update its request for GP, depending on the evaluation

it received (in step 5); the process starts over from step 1.

CONFLICTS OF GOAL COMPOSITION

Goal composition raises the important and challenging issue of goal conflicts, and

the necessity for conflict detection and resolution processes, with respect to com-

posed goals. The generic goal definition discussed above can help identify where

and when such conflicts may occur in a multi-goal system. Namely, a goal conflict

may arise if composed goals (G1 and G2) have incompatible viability functions (Vf1

incompatible with Vf2) and overlapping resource scopes (SR1 ∩ SR2 6= 0) and time

scopes (ST1 ∩ ST2 6= 0). Such conflicts can arise over those system resources that

belong to the resource scopes of both composed goals (where), and within those

periods that belong to the time scopes of both composed goals (when). The incom-

patibility between goal viability functions typically comes down to the necessity of

setting different values for the same system parameters. This provides some insight

into the form of conflict that can arise (what).

The ability to (pre)identify potential conflicts within a multi-goal system – in

terms of what the conflicts may be and where and when they may occur – pro-

vides a valuable opportunity to introduce conflict-resolution mechanisms, as suit-

able for each system. From a purely architectural perspective, such application-

specific goal detection and resolution processes may be implemented in a cen-

tralised, decentralised or hierarchical manner. Many design patterns are possible for

placing the conflict-related logic within a multi-goal system, such as those presented

in [FDD12].

Example: Smart Home and Smart Microgrid (continued)

The resource scopes and time scopes of a thermostat’s temperature goal

(GTemp) and of a power manager’s cost-saving goal (GMinCost) intersect over

242 5 Building Organic Computing Systems

an electric heater. This may lead to incoherent power configurations on that

heater, since its power configuration may need to be increased to reach GTemp

and to be decreased to reach GMinCost .

When a system’s own target goals are in conflict with the system’s external target

goals, the system must either: choose between egoistic and pro-social behaviours,

so as to prioritise self goals over collective goals (or vice versa); or, find a ‘compro-

mise’ goal that meets both self and collective requirements. Finding the appropriate

balance between internal and external goals is a challenging and subjective issue,

with multiple technical and social implications. For instance, solutions typically take

the form of an online multi-objective optimisation, i.e. finding a Pareto-optimum. A

key consideration here can be the period of time over which the optimisation should

be considered – e.g. short, medium or long term. Indeed, a system may adopt a self-

ish behaviour to optimise local revenue over the short term, yet this may lead to

sub-optimal results on the long term – e.g. tragedy of the commons. Other varia-

tions may take into account, or not, collective objectives such as fairness or justice

among the systems. Discussing such aspects in detail is outside the scope of this

section (see e.g. [JPD15] for a detailed discussion).

5.3.4 Holonic System Structuring with Specific Properties for

Complexity Management

Holonic systems were introduced in Section 3.3, based on observations of recur-

rent structural characteristics in complex natural systems. Such systems feature self-

encapsulated hierarchical structures. The main structural entities are represented by

holons, which, as wholes, are composed of sub-holons, and also, as parts, belong to

supra-holons, recursively.

This subsection aims to identify some of the key properties of holonic structures,

as observed in complex natural systems, that seem to be critical to their occurrence,

or creation, and to their viability and survival in complex environments [Sim96],

[Koe67].

We intend to then find ways to transfer these properties into the engineering

process of artificial systems, in order to cope with similar complexities [VBH08].

Hence, in Subsection 5.3.5, we will merge the holonic structuring concepts dis-

cussed here with the goal-oriented design principles introduced in Subsection 5.3.3,

in order to define a novel paradigm – goal-oriented holonics, [Dia+16]–intended to

help model, engineer and administer complex systems.

The following structural properties seem to play a critical role in successful sys-

tem development and adaptation when complexity raises.

5.3 Goal-oriented Holonic Systems 243

VIABLE HOLONIC COMPLEXITY FROM SIMPLICITY

Holonic systems are more likely to achieve viable structural and functional com-

plexity, meaning that they can survive and achieve their objectives, than other organ-

isations, since their complexity can be built progressively based on combinations of

simpler, viable structures and functions; and rebuilt from intermediate composites,

when current formations fail, rather than restarting from scratch (see the watch-

maker’s analogy in [Sim62] or [Sim96]).

In natural systems, evolution only has to ‘come up with’ stable compositions

based on simpler ones, and then find ways to combine these into new composites,

recursively. This is much faster than evolving complex systems directly from basic

elements. When this leads to dead-ends, existing composites can be dismantled and

new alternative composites tried-out at each level; via a partial, progressive roll-back

process rather than by restarting from scratch.

In engineered systems, this allows designers to concentrate on one component at

the time and to reuse basic components and intermediate composites across systems

(e.g. in Object-, Component- and Service-oriented software systems; or in electrical

and mechanical systems). Complexity is built by integrating more complicated com-

posites. In OC systems, this can enable the progressive (self-)integration of self-*

processes into coherent stable composites.

Example: Smart Home and Smart Microgrid (continued)

The developer of a Smart Home system will design Information and Com-

munication Technology (ICT) applications for controlling electrical devices

available in the home. These devices are assumed to be pre-existing and con-

nected into the home’s pre-existing ICT and electricity grids. Similarly, con-

trol applications are deployed onto pre-existing gateways, or set-top boxes.

Moreover, controlled devices might already be equipped with their own

controllers – i.e. "smart" devices, like thermostats, light-sensitive window

blinds, or electricity price-sensitive washing machines.

In other words, developers do not build Smart Homes from transistors and

cables, but rather from pre-existing, stable, well-tested controllable devices,

ICT platforms and infrastructure. Similarly, the designers of a "smart" de-

vice may not develop the integrated processor themselves, but rather select

an available one from the market. Hence, an essential part of Smart Home

development is about integrating pre-existing components, some of them

already endowed with self-* controls. The integration process involves de-

signing the overall system architecture, selecting compatible devices, and

developing control and middleware code for gluing everything together.

Finally, any device that is part of a Smart Home can also operate indepen-

dently from it. At the same time, a Smart Home may lose its "smartness" if

244 5 Building Organic Computing Systems

all controllable devices are removed from it; yet it should still prevail as a

Home.

Example: Natural Systems

Let us now also consider an evolutionary example from natural systems.

Multi-cellular organisms could evolve from pre-existing uni-cellular organ-

isms; which could form based on pre-existing chemical compounds; in turn

based on atoms, such as Carbon (C), Oxygen (O), Hydrogen (H) or Nitrogen

(N); in turn based on fundamental particles such as quarks. When an organ-

ism grows, it does so by self-organising pre-existing chemical compounds

found in its immediate environment; rather than basic particles. When it

dies, it disintegrates into chemical compounds which can be reused by other

growing organisms.

HOLONIC ENCAPSULATION AND SEMI-ISOLATION

A holon’s internal sub-holons can be partially isolated from the external environ-

ment, including other holons or supra-holons. This is achieved via a well-defined

border or interface with the environment, creating an identifiable closure around the

holon. For instance, the Operator Theory15 [Akk10] introduces the generic concepts

of structural and functional closures, as the defining elements for various kinds of

entities, which can self-organise, in a bottom-up fashion, to form hierarchical struc-

tures (i.e. successions of pairs of closures of different kinds).

The interactions of such encapsulated sub-holons with the external environment

are limited to a well-defined range of exchanges, or in/out-put types. This creates

a semi-controlled environment within each holon, diminishing environmental un-

predictability for internal entities and hence facilitating successful adaptation to a

limited internal environment (with a limited state space) [Akk10]. Of course, this

limits the holon’s adaptability; and if the isolation is breached, the holon can be

corrupted or destroyed. Still, this is the case in most systems, irrespectively of their

internal structure.

When holons can function autonomously, in complete isolation, if needed, their

robustness and resilience can further improve. Here, a holon can be integrated within

15 Operator Theory: http://the-operator-theory.wikispaces.com (accessed in November 2016)

5.3 Goal-oriented Holonic Systems 245

a supra-holon (in order to benefit from it, possibly at a cost) when possible, but can

also survive as a standalone system when needed (when the supra-holon fails). This

allows lower level holons to survive and self-organise into a more suitable supra-

holon, rather than restarting from scratch. Finally, isolation also stops cascading

failures from propagating through the entire system.

Example: Smart Home and Smart Microgrid (continued)

Smart devices, such as thermostats or light-sensitive window blinds, can op-

erate semi-autonomously and independently of whether they are integrated

within a Smart Home or not; as long as their electricity supply is provisioned

for. When integrated within a Smart Home, they only interact with their en-

vironment via clearly-defined observation probes and control inputs.

Similarly, Smart Homes that are equipped with local electricity generators

may operate semi-autonomously within a Smart Micro-grid, interacting with

it via power prosumption, and pre-defined observation and control ports.

Furthermore, such Smart Home may decide to disconnect itself from the

grid altogether in case of major grid disturbances, to avoid damaging internal

devices.

Example: Natural Systems (continued)

Organisms are semi-closed chemical systems, considered as individual units

of life (notion subjective to an external observer), yet not completely iso-

lated from their environments, with which they exchange energy and var-

ious chemical compounds. An organism’s interface with its environment,

including its skin and external orifices, filters and controls such exchanges,

protecting its internals from damaging factors.

Similarly, within a multi-cellular organism, one cell represents an individual

autonomous holon, encapsulated within a membrane, which filters the types

of chemical compounds that can transit in and out of the cell. This limits the

contextual space to which the cell’s internal metabolic processes must react

to in order to maintain homoeostasis.

In some cases, collective autonomous holons, such as human societies, also

create semi-closed borders around themselves; which can be both conven-

tional, like national borders, or physical, like actual gated walls. The aim is

to control the influx and/or departure of both human members and physical

products, hence limiting disturbances to internal self-organising processes.

246 5 Building Organic Computing Systems

HOLONIC ABSTRACTION

Each holon is influenced by other holons only in a coarse manner, via an aggregate

of their states and behaviours. While encapsulation limits external influence on a

holon’s internals, abstraction protects external components from the holon’s details,

which are only exposed in aggregate form (e.g. [MF05]). This means that a holon

can use or rely on another holon’s aggregate effects, or functions, irrespectively

of how these are obtained (from its internals). This can make holons less sensitive

to changes in other holons’ internals, and render their integration more stable. It

also facilitates the development and co-existence of holons with diverse structures

and implementations, as only their aggregate effects matter. This helps system ro-

bustness, as diversity increases chances of survival in unpredictable environments.

It also allows for local optimisations to specific contexts. Finally, it helps external

observers to represent and reason about the system, as each holonic level can be

specified separately, via the abstractions of its contained holons and their interrela-

tions.

Example: Smart Home and Smart Microgrid (continued)

In a Smart Home, devices are only accessible via special-purpose interfaces

for observation and control; their internal designs and operations remain

opaque to external entities, and only reflected via their provided functions.

The same applies to Smart Homes integrated into Smart Micro-grids, where

the grid is only aware of a home’s aggregate prosumptions that were not pro-

visioned for internally (e.g. via local generation, consumption or storage).

This greatly simplifies the Smart Micro-grid’s control operation.

Example: Natural Systems (continued)

We can consider that a multi-cellular organism merely uses its cells via

the overall functions they perform, like nerve cells’ communication, muscle

cells’ contractions, or adipose cells’ storage functions; and only indirectly

depending on the cells’ internal structures and processes that support those

functions. This means that the organism is less exposed and reactive to all

the intricacies and micro-fluctuations happening within its cells, hence sim-

plifying its own self-* processes.

5.3 Goal-oriented Holonic Systems 247

PROGRESSIVE REACTIVITY ACROSS HOLONIC LEVELS

In natural holonic systems, sub-holons typically are more tightly coupled among

themselves within a holon – meaning there are more links and/or stronger influences

among the sub-holons – than with sub-holons in other holons. The same applies

to the holons within a supra-holon, with respect to external holons. Consequently,

changes and reactions within a sub-holon propagate faster within the containing

holon than between holons. The same applies between holonic levels, with lower

levels featuring higher change rates than higher levels.

This property can help limit chain reactions and oscillations through the entire

holonic system, since each holon may stabilise after an internal change faster than

this change can propagate to other holons. If the holon’s stable aggregate state does

not change, then no impact is felt on the other holons.

If the holon’s aggregate state does change, then the other holons must adapt to

it, but only after this new state is stable. Similarly, higher levels only adapt to ag-

gregate changes in the lower levels, once they have stabilised. In some cases, lower

levels subsequently detect and adapt to changes in the higher levels, which they have

caused in the first place – i.e. causing a yoyo effect. Yet, when these dynamics hold,

such oscillations occur over longer periods and may not cause major instability.

Example: Smart Home and Smart Microgrid (continued)

Smart devices within a Smart Home should be better interconnected and re-

act faster to changes amongst themselves than with devices from other Smart

Homes. Hence, even if the operation and state of one Smart Home may

impact the self-* processes of another, this interference should propagate

slower than the time it takes for the internal devices to react and re-stabilise.

Example: Natural Systems (continued)

Let us also take a more wide-spread example from the human organisations

realm. Such organisations feature hierarchical authority structures. Most en-

terprises and corporations, members of different groups, or departments,

have tightly-coupled relations among themselves, yet are only supposed to

communicate with members of other groups via a small number of superi-

ors. Hence, ideas and influences spread faster within each group than among

groups. In reality, many human systems are actually organised via multiple

overlaid hierarchies, where communication can pass via alternative superi-

ors, or even across members directly, skipping the higher hierarchical levels.

This renders the spread of information more efficient across the entire or-

248 5 Building Organic Computing Systems

ganisation. The more isolated groups are from each other, the slower the

information spreads between them (relatively to internal dissemination).

5.3.5 Goal-oriented Holonics for Complex Organic Systems

This subsection aims to discuss the benefits, implications and recommendations for

designing OC systems that can achieve stakeholder goals (Subsection 5.3.3) and

rely on holonic properties to manage complexity (Subsection 5.3.4).

Since complex OC systems are engineered for a purpose, merging the goal-

oriented paradigm with the holonic structuring principles – hence giving rise to

goal-oriented holonic systems – can capitalise on the benefits of both approaches.

Each (self-)integrated holon has at least one provided goal (plus mere existence

by default), which should be achieved via a composition (linear or non-linear) of re-

quired goals, in turn provided by its sub-holons (internal) or peer-holons (external) –

e.g. in Fig. 5.20, the goal G is provided via two required sub-goals, provided in turn

by two sub-holons (internal), and by one required goal G′ provided by a peer-holon

(external). When holons belong to several supra-holons they may receive conflicting

goal requests.

ENGINEERING FOR HOLONIC BENEFITS

Let us now look at how engineers can aim to achieve the holonic properties identi-

fied in natural systems in order to build and maintain goal-oriented OC systems.

Complexity from simplicity via explicit goals – This property can be achieved

by structuring the OC system as a holarchy, where more complex holons targeting

stakeholder goals are composed of simpler holons targeting sub-goals, recursively.

This way of compartmenting system functionality into interrelated self-encapsulated

components is a well-known ‘divide and conquer’ engineering technique. It is also

the source of severe system integration issues, especially when integration is per-

formed during runtime. Making holons goal-oriented, with well-defined provided

and required goals, facilitates this task by enabling dynamic goal-based system in-

terconnections (goal matching).

The uncertainties, and their consequences, inherent in the runtime integration

of unknown entities can also be minimised, over the medium and long term, via

two main functions. Firstly, a system’s goal-evaluation capabilities enable it to de-

termine the suitability of its integration with other systems that provide the goals

5.3 Goal-oriented Holonic Systems 249

they require. Secondly, a system’s ability to find and demand required goals from

alternative systems enables it to change the providers of its required goals dynami-

cally, when the current ones do not meet the expectations (as indicated by the goal-

evaluation functions).

As previously indicated, these mechanisms are similar to those employed in

service-oriented architectures (SOA); with two main differences. Firstly, goal-

orientation enables, in principle, much richer functions for determining the com-

patibility between entities, based on their provided and required goals; than service-

orientation where compatibility is merely based on interface type matching (some-

times with additional quality and cost-related requirements, via a Service Level

Agreement, or SLA). Also, (re)integration mechanisms based on the results of

goal evaluations can go beyond mere software exception handling or SLA-breaking

penalties, as is often the case in SOA. Secondly, holonic system structuring may

serve for reducing the search space of compatible holons, i.e. holons that provide

required goals, first to the local scope of the encapsulating supra-holon; and only if

no match is found for progressively extending this search space to the scope of other

supra-holons (see encapsulation and semi-isolation property below).

Of course, this approach should not be applied to critical systems, such as nu-

clear plant controllers or autonomous vehicles, where a trial-and-error search for

successful goal-oriented system integrations would be mostly unsuitable. We only

target systems where dynamic integration was already foreseeable and/or required,

in order to propose more generic and richer goal-oriented compatibility matching;

and in order to provide more support for self-integration based on goal-evaluations.

Goal-orientation allows for both: i) top-down goal translation and splitting into

finer-grain goals, plans and actions; and ii) bottom-up goal composition and (re)def-

inition. Both processes may occur simultaneously, within each holon, and between

holons. Bottom-up processes may lead to the formation of smaller-scale subsys-

tems, that provide intermediate goals, which can then shorten top-down resolution

processes that require these as their cause goals (the details of goal publication,

finding and dynamic matching are out of this section’s scope). Each holon evaluates

and adapts its internal sub-holon organisation and implementation so as to meet its

target goals (e.g. replace failing sub-holons or reorganise). Advanced holons – e.g.

intelligent, self-aware holons – may also justify the reasons behind goal failures to

their requesters and suggest alternative goals or external help.

Encapsulation and semi-isolation via border control – In engineered systems

semi-isolation can be achieved by encapsulating holons into a special-purpose con-

tainer, or membrane, which defines a clear boundary between the holon’s internals

and its external media [Akk10]. Border control mediates and regulates the holon’s

inputs and outputs. In the presented conceptual model, these inputs and outputs

mainly consist of acceptable incoming and outgoing goal requests and evaluations.

Additionally, border control can also regulate the acceptance of sub-holons in and

out of the system. The membrane that implements border control can perform addi-

tional functions, such as: transforming the holon’s target goals into formats suitable

for the internal sub-holons; detecting and resolving conflicts among multiple target

250 5 Building Organic Computing Systems

goals; and, distributing the resulting non-conflicting target goals to internal sub-

holons (further research studies are necessary to establish such membrane-specific

processes).

The concept of membrane, or container, is already implemented in many component-

oriented technologies, such as CORBA Component Model (CCM), Java EE, .NET,

Fractal or iPOJO. Here, the container serves as a protective and functionally-

enhanced proxy between the external environment and the internal business logic.

External access to the internal component business logic is only enabled via well-

defined interfaces. The container also offers non-functional services such as secu-

rity, transactions and dynamic binding. Hence, the traditional component container

concept is compatible with the holonic membrane introduced here, yet lower-level

and more limited.

Semi-isolation allows the holon’s internals to fine-tune and stabilise their self-

integration processes, for target goal resolution, within the space delimited by well-

defined provided and required goals, and influences from the execution context. This

enables holons to develop diverse internal configurations that best meet the target

goals with local resources and within local environments (also taking into account

their self-goals).

In open environments, system semi-isolation can prevent the integration of un-

known types of entities, which would be unable to self-organise with existing ones;

or of unidentified entities that may be malevolent, hence keeping high internal trust

levels and a more efficient interaction between accepted members [Ede+16]. Self-

organisation techniques such as Trust Communities (see Subsection 8.5.1) can be

used to assemble groups of efficient and benevolent trustworthy holons. Surely,

if the membrane is breached, these guarantees no longer hold. The holon should

take appropriate action, such as reinforcing the membrane; triggering an immune

response; signalling to external entities; self-disassembling; and preventing failure

propagation.

Abstraction via goals – Goal-oriented holons can be abstracted as entities that

reach well-defined goals, in certain contexts, without worrying about how they

achieve this. The holon’s success or failure, and its usefulness within a supra-holon’s

organisation, is determined merely by its provided goals and their evaluation. These

represent aggregates, or abstract models, of the holon’s capabilities, state and be-

haviour. This goal-oriented abstraction helps human administrators, designers or

higher-level observer/controllers to model, analyse and communicate about com-

plex holonic systems, by focusing on one holonic level, in one local context, at the

time. It also helps to engineer holonic systems since each holon can be developed

and maintained quasi-independently from the others, only taking into account their

aggregate goal-based influences. It also facilitates the analysis of inter-holon goal

dependencies, to assess the satisfiability of target goals.

The difficult system integration process can, in principle, be automated and

moved into the runtime, since the system itself may be able to search for successful

holonic compositions via trial and evaluation processes, at increasing holonic levels.

While the search process is a complex topic in itself (outside this section’s scope)

5.3 Goal-oriented Holonic Systems 251

we re-emphasise that it is much facilitated by holonic structuring, since intermediate

composites attaining intermediate goals can be reused as intermediate search results.

Combined with the previous feature (semi-isolation via border control), the ability

to represent and interact with holons via goal-oriented abstractions is key to sup-

porting interrelations between heterogeneous holons, via standardised goal models.

It hence facilitates their integration into coherent supra-holons. This allows dealing

with local issues locally, and global issues globally, while (dynamically) finding a

balance between the two. In authority-based hierarchies, this helps to balance the

power between a holon’s supra- and sub-holons [DP14].

Progressive reactivity via tuning of self-* processes – In engineered holonic

systems, the self-* processes within holons must be designed and tuned with respect

to each other so as to ensure convergence and (at least relative) stability; or at least

to avoid major instabilities and divergence.

One way to achieve this is to ensure progressive reactivity among holons and

across holonic levels [Sim62]. For instance, goal-requesting holons may obtain

goal evaluations (and hence react to these) less frequently than the rate at which

goal-providing holons change internally. This can be achieved as evaluations rely

on aggregate measures that take longer to collect and compute than the measure-

producing processes. This means that the frequency of reactions increases as holons

are farther from the roots of the goal dependency graph (i.e. from the initial stake-

holder goal). Across holarchic levels, this type of progressive reactivity tuning may

imply that supra-holons will react with lower frequencies than lower-level holons.

This, assuming that the initial stakeholder goal was given to a supra-holon. Among

peer holons (i.e. at the same holarchic level), suitable reactivity tuning may be more

difficult to establish; future research is necessary, case by case.

Among reflex systems, progressive reactivity may be achieved by interconnect-

ing a holon’s sub-holons via topologies that favour communication and change prop-

agation; and sub-holons in different holons and levels via more seldom links (e.g.

community network). This can be facilitated by border control, which limits link

formation across the holonic membrane; and hence encourages internal connections.

Such tuning should allow self-* processes to stabilise within each holon, before trig-

gering self-* processes in peer-holons and supra-holons. Achieving such dynamic

properties is a rich research topic in itself (further research is required); here we

merely identify it as a key engineering objective.

MEETING COMPLEX OC SYSTEM REQUIREMENTS VIA GOAL-ORIENTED

HOLONICS

Let us now see how the above properties of a goal-oriented holonic system can

help address the challenges confronting the development of complex OC systems

(Subsection 5.3.2). Table 5.1 summarises the main considerations in this respect.

252 5 Building Organic Computing Systems

OC

System

requirements

Holonic

properties

Complexity

from simplicity

Encapsu-

lation &

semi-isolation

Abstraction Progressive re-

activity

Scalability Holons repre-

sent reusable,

pre-integrated

subsystems,

providing

(pre-tested)

sub-goals

A holon’s in-

ternals are only

exposed to a

fraction of the

overall system,

via provided

and required

goals. Sub-

holons entering

or leaving

the holon are

filtered. Holon

internals do not

impact other

holons, and

their contents,

directly

A holon only

exposes an

abstracted view

of its state and

behaviour to

external enti-

ties. At each

holonic lecel

some informa-

tion is lost from

the underlying

level

Tuning the

reactivity to

change of each

holonic level,

with respect to

the reactivity

of upper and

lower levels,

helps avoid

rapid oscilla-

tions across the

entire holarchy

Diversity Different com-

positions of

sub-holons

may lead to a

wide diversity

of holons,

supra-holons,

etc.

Each holon

may feature

specific internal

design, im-

plementation,

configuration,

policies, ect.

Each holon

is viewed ex-

ternally via

an abstract

description

that hides its

internal details;

this helps in-

tegration of

diverse hollons

Holons with

diverse imple-

mentations can

be integrated

as long as their

dynamics are

tuned to avoid

instabilities

5.3 Goal-oriented Holonic Systems 253

Minimal inter-

ference

More complex

holons should

only be built

from simpler

sub-holons if

there is limited

interference

among these, or

if their interfer-

ence results in a

desired global

effect for the

new holon.

A holon’ in-

ternal changes

may be invisi-

ble to peer-and

supra-holons

Only the aggre-

gate effects of a

holon’s internal

changes are vis-

ible to peer and

supra-holons

Interference

among sub-

holons of

different holons

occurs at a

slower pace

than interfer-

ence among

sub-holons of

the same holon

Abstract

system descrip-

tions

A complex

system can be

described via

the abstract de-

scription of its

root holon(s),

with limited or

no details about

its internals.

Hide holon

internal details

from external

holons

Holons are

described via

their provided

and required

goals (and

evaluations)

Knowing the

location of a

holon within

a holarchy

may provide

a hint about

its relative

reactivity

Time-tuning

of self-* pro-

cesses

Once con-

vergence is

ensured within

lower-level

holons, these

can be reused

as stable com-

ponents in

higher-level

self-* pro-

cesses (hence

to use with

progressive

reactivity)

Holons do not

react to other

holons’ interal

changes that are

not observable

externally

Having supra-

holons only

react to aggre-

gates of the

state and be-

haviour of their

sub-holons can

provide a way

to tune self-*

processes via

progressive

reactivity, in

cases where

aggregate mea-

sures take time

to compute

In the goal-

dependency

graph, holons

closer to the

roots (closer to

the stakeholder)

should react

slower than

holons farther

away from the

roots (closer to

resources); ad-

ditional tuning

must be done

among peer

holons at the

same level

Table 5.1: How properties of a goal-oriented holonic design help address the chal-

lenges of complex OC systems

254 5 Building Organic Computing Systems

In brief, complexity from simplicity allows the progressive assembly of reusable

entities – supra-holons, made of holons, made of sub-holons, and so on (scalabil-

ity); enabling a wide variety of assemblies (diversity); only allows complexity to

be incremented at each level if the interference among holons at that level is un-

der control (minimal interference); provides progressively abstract descriptions at

increasing complexity levels (abstract system descriptions); and, only builds more

complex holons from (relatively) stable sub-holons (time-tuning of self-* processes).

Encapsulation and semi-isolation enables each holon’s internals to function

without being aware of the entire system complexity (scalability); enables each

holon to feature different designs and implementations (diversity); limits interfer-

ences between each holon’s internals and externals (minimal interference); hides

holon internals from external entities (abstract system descriptions); and, hide most

internal changes from external entities, which thus cannot react to them (time-tuning

of self-* processes).

Abstraction loses information among levels, hence decreasing observable com-

plexity (scalability); helps the integration of heterogeneous holons via standard de-

scriptions or interfaces (diversity); only presents aggregate changes of a holon’s

internals to external entities (minimal interference); describes holons via provided

and required goals (abstract system descriptions); and, can help time tuning among

holons at different levels, since aggregated changes may propagate increasingly

slowly from lower levels to higher levels of a holarchy (time-tuning of self-* pro-

cesses).

Finally, progressive reactivity helps avoid oscillations across holarchic levels

(scalability); allows the integration of heterogeneous holons, as long as their mutual

reactivity does not cause instabilities (diversity); decreases the mutual reactivity be-

tween holons that belong to different supra-holons (minimal interference); may con-

tribute to the description of a holon via its positioning in the reactivity chain abstract

system descriptions); and, implements time-tuning among holons by having supra-

holons react slower than holons, which in turn react slower than sub-holons, and so

on (time-tuning of self-* processes).

APPLICATION SCENARIOS

We aim to illustrate the goal-oriented holonic concepts introduced here via four

example scenarios from the smart micro-grid case study (Subsection 5.3.2). Each

example highlights a typical issue that occurs in OC systems and illustrates a con-

ceptual solution based on the proposed model (Subsection 5.3.5, and [Dia+16]).

While both the problem addressed and the solution are customised for the concrete

example given, they can be generalised and reused across similar cases. We start

with a simple example involving a single smart device, and then progressively add

complexity by introducing new challenges and corresponding solutions. The generic

problems introduced are as follows:

5.3 Goal-oriented Holonic Systems 255

1. Multilayer translation from goals, to rules, to rule-enforcement, to device con-

trol;

2. Goal conflict resolution;

3. Top-down facilitation of bottom-up coordination;

4. Bottom-up goal definition and top-down goal enforcement.

The generic solutions provided ground the recommendations we made above to

concrete realistic cases. For each example, we 1) offer a brief description and 2)

highlight the goal-oriented holonic properties. Goal definitions and transformations

are conceptual; the exact formalisms have to be specified case by case. The aim is to

illustrate the benefits of the presented modelling method, at a high abstraction level.

APPLICATION SCENARIO 1. MULTI-LEVEL TRANSLATION OF A SINGLE

GOAL WITHIN A SMART HOME

(1) Overview and selected scenario: This first example focuses on a single-goal

smart home. It depicts a typical case of progressive multi-level goal transforma-

tion – from a high-level stakeholder goal on an entire holonic system, to low-level

technical commands and configurations on system resources. Each level is imple-

mented via a distinct self-* process (holon Hi), transforming target goal(s) into

cause goal(s), and adapting this transformation dynamically based on feedback from

higher and lower levels; and from observations of the environment. The cause goals

that a higher level requires become target goals that the lower level provides, re-

cursively; until, at the lowest level, cause goals represent actions on resources. This

type of multi-level transformation is likely to occur across a wide range of systems.

In short, in a typical case, a high-level stakeholder goal is translated into a set of

behavioural rules, which are then enforced into a production system, in order to

control resources and achieve the high-level goal.

Let us now see in a little more detail how these different levels of transformation

may operate in a typical case (Fig. 5.21). In the first level (H1), a stakeholder goal

G (target goal of H1) is translated into a set of behavioural rules GR (cause goals of

H1). These rules specify how to control an OC production system in order to achieve

the target goal G. For instance, if the target goal is comfort GCm f (definition detailed

below), then one rule (rule1 ∈GR) for achieving GCm f can be, specified informally,

e.g., rule1: when a person enters a room, if the room is dark, then switch on one

light.

The mapping of the target goal GCm f into rules GR can be adapted dynamically,

based on feedback. Such feedback can be received dynamically via the two kinds of

evaluations that level H1 has access to.

Firstly, H1 evaluates the ability of the underlying level H2 to enforce the rules

GR. For instance, H2 may indicate that rule1 cannot be enforced since no light is

available. Here, H1 can self-adapt and specify a new rule (rule2 ∈ GR′), e.g. rule2:

when a person enters a room, if the room is dark and if there is daylight outside,

then open the blinds on one of the room’s windows. The question of trust also plays

256 5 Building Organic Computing Systems

Fig. 5.21: Multi-level transformation of goals to rules and actions

an important role here, since H1 must be able to trust that feedback from H2 is true.

In cases where H1 suspects that H2 is trying to mislead it, or is simply incapable of

enforcing the rules GR, H1 can try to find and bind to an alternative holon H2′ that

also provides the ability to enforce GR.

Secondly, H1 is evaluated and receives dynamic feedback from the stakeholder.

For instance, the user may indicate that luminosity is insufficient and hence the

comfort goal GCm f is insufficiently achieved. Provided that GR is achieved, such

negative evaluation of GCm f indicates that the rules GR are inefficient for achieving

GCm f . Here, H1 can again self-adapt to update rule2, e.g., rule2’: when a person

enters a room, if the room is dark and if there is daylight outside, then open the

blinds on all of the room’s windows and the glass ceiling. A critical question here

is how to obtain the rules GR, and their updates G′R. Options include dialogue with

the stakeholder (e.g. [Des16]); swapping between predefined rule sets; inference of

new rules from knowledge and predefined meta-rules (e.g. meta-rule: to increase

luminosity, activate more light-increasing devices; then knowledge on the functions

of each device available); combinations of the above; or other. Surely, the risk taken

in trying-out untested rules must be evaluated against the estimated criticality of the

5.3 Goal-oriented Holonic Systems 257

service provided and its potential consequences; this is no easy matter indeed (e.g.

sometimes it is wiser to allow for suboptimal indoor temperature rather than risk to

burn the house down).

The second level (H2) manages the actual enforcement of the behavioural rule

set GR (target goals for H2). The transformation process of H2 consists in extending

the rule set GR so as to also specify the incentives, such as rewards and penalties,

for the OC production system to follow these rules. Hence, the cause goals at this

level H2 are the extended set of rules GRinc
that include these incentives. Based on

feedback on the effectiveness of the current incentives, these extended rules can

be adapted at runtime, by changing the incentive values or by adopting a different

rule-enforcement strategy. For instance, if the main Controller Ctrl1 of the OC pro-

duction system H3 is not autonomous or self-aware – meaning that it cannot decide

on its own whether or not to abide the rules GR – yet it cannot follow these rules –

for example because it does not understand the rule specification syntax – then there

is little point in increasing the penalties towards H3. The better strategy here, would

be for H2 to disconnect from H3 and find an alternative production system H3′ . In

this case, the penalty for non-conformance can be seen as an elimination from the

system; and the reward as a maintenance in the system.

Finally, the third level H3 controls smart devices by following the rules GRinc
. In

the example in Fig. 5.21 H3 is in turn composed of a hierarchy of lower-level holons,

with a root Controller (H31) and several leaf devices (H32 – Heater, H33 – Lamp, and

so on). H3 can also self-adapt in order to maximise rewards and minimise penalties

from H2. For instance, to avoid exclusion from the system as in the example above,

H3 can replace the non-compliant Controller Ctrl1 by an alternative one Ctrl2. In

case no alternative controller is available, H3 may attempt to create a peer-to-peer

network among its smart devices, provided that these can interpret and follow the

rules collectively. H3 is evaluated by H2 based on its ability to follow the rules GRinc
.

H3 also provides additional measurements, like room temperature or luminosity, that

can be used as comfort indicators at the higher level H1.

Fig. 5.21 identifies the main steps of a multi-level goal-translation process. While

some of these steps may execute in parallel, we list them here sequentially, by first

going top-down through the holonic levels (from H1 to H3) – from the User’s goal all

the way to device controls (i.e. progressive goal translation and splitting) – and then

coming back-up (from H3 to H1) – from device evaluations all the way to assess-

ing the User goal. Whenever a holonic level evaluates the underlying level, it may

accordingly adapt its internal goal-resolution process. This includes the User, who

may adapt its initial goal, based on evaluation feedback. The main goal-resolution

steps are as follows:

1. A User sets a comfort goal for the smart home: GCm f =(com f ort;home; f orever).
Here, com f ort represents the viability function Vf of GCm f – what should be

achieved, and how to evaluate it. Also, com f ort is to be achieved within the

home – which represents the resource scope SR of GCm f . Finally, com f ort is to

be achieved within the home f orever – which represents the time scope ST of

GCm f . Hence, GCm f is a target goal for the smart home, which requests it from

258 5 Building Organic Computing Systems

its internal holon H1. Hence GCm f becomes a target goal for H1, that is, iff H1

accepts this requested goal as its target goal;

2. A Comfort Solver (within H1) translates and splits the comfort goal GCm f into

a set of rules for the home’s smart devices: GR = (rules;devices; intervals).
Here, the GR’s viability are the actual rules, the resource scope SR are the de-

vices to which these rules apply, and the time scope ST is a set of subsequent

intervals over which the rules apply and are evaluated. In order to obtain these

rules GR, the Comfort Solver first maps the comfort goal GCm f to interme-

diate goals, such as temperature GT mp = (T ;rooms; intervals), or luminosity

GL = (L;rooms; intervals); and sets the priorities of these intermediate goals

(to simplify, these operations are all shown as a single translation from comfort

to rules in Fig. 5.21);

3. A Rule Manager (within H2) is requested to enforce the rules GR. As detailed

above, it extends the rules to GRinc
that include specific incentives and sends

these to the OC Production System (H3) for execution;

4. A centralised home Controller within the OC Production System (H3) manages

the prosumption of smart devices to meet the rules GRinc
(e.g. [Fre+15]); this

controller could also be decentralised, hierarchical, and so on.

5. Device usage (within H3) results in an aggregated prosumption for the entire

house (further discussed in examples 3 and 4);

6. The Controller (H3) provides comfort indicators, and is also monitored for rule

conformance (provided evaluation for H2);

7. The Rule Manager (H2) returns rewards and sanctions to the Production System

(H3), based on monitored rule conformance; the Controller (H3) may adapt its

device-management strategy or exclude non-conforming devices accordingly

(included in step 4); the Rule Manager (H2) may also adapt its incentive strategy

for H3;

8. The Comfort Solver (H1) receives comfort indicators (provided evaluation from

H2) and aggregates them into a comfort evaluation estimate. Based on these

indicators, it may then adjust the rules GR to better achieve the intermediary

goals GT mp and GL and hence the target goal GCm f (part of step 2). It also

forwards the comfort evaluation to the User, possibly indicating the causes of

failures (provided evaluation from H1);

9. The User may change the goal GCm f to a more realistic one, based on the evalua-

tion and recommendations s/he receives; or on external factors, like preferences

and other contextual pressures.

(2) Goal-based interactions & holonic properties:

Complexity from simplicity is reached here by integrating several goal-oriented self-

* loops into the holonic OC system S. Namely, for clarity, we chose in the example

above to describe the overall goal-resolution process as a sequence of steps fol-

lowing a top-down path followed by a reverse bottom-up path through the smart-

home system. In reality, this process is actually composed of several resolution sub-

processes, each implemented as a feedback loop that targets a different (sub-)goal.

These self-* sub-processes are implemented by different sub-holons of the OC sys-

tem S: Comfort Solver H1, Rule Manager H2, and Production System H3 (in turn

5.3 Goal-oriented Holonic Systems 259

composed of a Controller and smart devices sub-sub-holons). These self-* sub-

processes execute in parallel and coordinate with each other:

• Input goal from the User (holon) into the OC system S: the User inputs the Com-

fort goal GCm f (request) into the OC system and adjusts it based on evaluation

feedback (reply) – steps 1 and 9;

• The Comfort Solver H1: resolves the Comfort goal GCm f (target) by transform-

ing it into Comfort Rules GR (causes) and adjusting these based on feedback

related to their efficiency from the Rule Manager H2 – steps 2 and 8;

• The Rule Manager H2: ensures that the Comfort Rules GR are fulfilled by im-

posing a reward and penalty strategy onto the Controller in H3 and adjusting

this strategy based on feedback on its efficiency – steps 3 and 7;

• The Controller H3: manages the smart devices based on the Comfort Rules GR

and adjusts its control strategy based on the capabilities of devices and on the

reward/penalty input from the Rule Manager – steps 4 and 6;

• Output goals of the OC system: the OC system holon S requires an aggregate

Prosumption goal GPros for achieving the User’s goal GCm f ; this goal GPros will

be provided by another OC system, as discussed in examples 3 and 4.

Integrating these relatively simple control loops together leads to an overall

OC system that can achieve a target Comfort goal (abstract, descriptive, human-

oriented) by requiring a Prosumption goal (concrete, prescriptive, technical).

Semi-isolation is achieved within each holon by limiting the kinds of goals it can

be required to pursue – namely, GCm f for the Comfort Solver and well-defined rules

GR for the Rule Manager, and the Controller. Hence, these holons can each optimise

their internals for these types of goals only. In the Production System, semi-isolation

is also achieved by screening devices before they join the smart-home, to ensure for

instance that they are trustworthy and can be managed by the Controller. Further-

more, entities external to the OC system S, such as grid controllers, have no visibil-

ity over these internal devices, for privacy preservation; unless special permission is

given. Semi-isolation also prevents the internal controllers of the OC System S from

interfering directly with external controllers, such as those of another OC System

S′. All exchanges with external entities pass through the membrane of S and hence

are subject to its border control mechanisms. Among others, this can help prevent

cascading self-adaptations, since the failing of a device in a smart home S should

not be signalled directly to devices within another smart home S′. External entities,

such as S′, only become aware of, or impacted by, such internal events within S,

indirectly, via the influence that such internal events may have on the aggregated

change of the system S, which is visible from S′ (see Abstraction below) – e.g. a

failure of a device in S impacts the aggregated prosumption of S.

Abstraction is reached by representing each holonic level via its goals and hiding

its internal details. Hence, the entire OC system S representing the smart home is

seen from the grid only via its aggregate prosumption GPros; and seen by the user

only via its ability to reach the Comfort goal GCm f . This goal-based abstraction also

applies to the system’s internal sub-holons, where, for instance, the home Controller

is seen by the Rule Manager only via its conformance to rules; the Rule Manager

260 5 Building Organic Computing Systems

only via its ability to enforce rules GR; and the Comfort Solver via its ability to find

efficient rules GR that lead to the Comfort goal GCm f . This facilitates the modelling

and management of each level. For instance, the Controller uses knowledge on how

well devices achieve goals and not on how they achieve them. This also allows each

holon to reach its goals via a specific internal organisation, favouring diversity and

local optimisation.

Progressive reactivity is tuned so that higher-level self-* loops, such as the User

updating GCm f , are slower than intermediate goals, such as the control loops that

translate GCm f to GR; and then to rule enforcement. These are in turn slower than

lower-level control loops, like the ones performing device management. Indeed,

if the user updated GCm f , based on perceived temperature, faster than thermostats

could reach a comfortable temperature, then oscillations may occur. Also, when de-

vices of known types – like temperature or luminosity regulation equipment – join

or leave the home, only the Controller reacts to take them into account – meaning,

to detect and to manage them. The rest of the OC system S remains unchanged, un-

less devices cause changes that are visible at the aggregate level, like breaking the

rules (in which case the Rule Manager intervenes, while the Comfort Solver may

still remain unaware of such events).

APPLICATION SCENARIO 2. MULTI-GOAL CONFLICT WITHIN A SMART

HOME

(1) Overview and selected scenario: This example introduces into the previous OC

system S an additional target goal, which is requested by an external stakeholder

and creates a conflict with an internal goal. For instance, based on example 1, the

new target goal can represent the external power prosumption rules GPR, which the

grid manager imposes in order to avoid blackouts. These external rules GPR cause

a conflict with the comfort rules GR (since they impose incompatible prosumption

requirements on the smart devices).

Note that by conflicting with GR, the external rules GPR also cause an indirect

conflict with GCm f (since GR cause the achievement of GCm f). However, in prin-

ciple, GPR do not necessarily need to conflict with GCm f – for instance, in cases

where GCm f can be achieved via an alternative set of rules GR′′ that require lim-

ited power consumption – e.g. using oil-based heating to maintain temperature, and

using sunlight and gas lamps to ensure luminosity.

Fig. 5.22 generalises this specific case to External Rules and Internal Rules, in

order to only focus on where the conflict is addressed from an architectural out-

look. The Conflict Resolution holon in Fig. 5.22 is inserted in-between the Comfort

Solver holon H1 and the Rule Manager holon H2 that were designed in example 1

(Fig. 5.21), in order to produce a set of coherent rules GRc for the Rule Manager.

Fig. 5.23 depicts a simplified view of the example in Fig. 5.21 and shows how the

additional conflict-resolution holon HCR is inserted in-between H1 and H2.

5.3 Goal-oriented Holonic Systems 261

Fig. 5.22: Conflict resolution between target goals – where goals can be internal

and/or external, and can represent high-level objectives, rules, constraints, policies

or actions

Fig. 5.23: Conflict resolution between comfort and prosumption rules

The same design applies, and should be inserted in the overall system design,

whenever multiple conflicting goals are requested from any of the (sub-)holons,

at any level. The actual conflict resolution strategy, or algorithm, is not essential

here; nor is its particular design (e.g. centralised, decentralised, or hierarchical – see

[FDD12] for a discussion on design patterns for conflict resolution). These aspects

will depend on each system, case-by-case. In our example, a compromise will have

to be found to ensure minimal comfort while not jeopardizing the grid.

(2) Goal-based interactions & Holonic Properties:

Complexity from simplicity is achieved here by inserting this new holon in-between

the Comfort Solver H1 and the Rule Manager H2 (in example 1). Depending on

its complexity, the Multi-goal Manager (Fig. 5.22) can be implemented as a mono-

lithic centralised algorithm, with or without out self-* capabilities, or via various

decentralised design patterns [FDD12], or as a holonic system.

Semi-isolation ensures that the Multi-goal Manager (for Conflict Resolution)

only has to deal with conflicts inherent in the predefined types of its input goals

and hence can optimise for this limited domain.

262 5 Building Organic Computing Systems

Abstraction means that the Multi-goal Manager holon is viewed externally as

a conflict-resolution function, transforming certain types of conflicting input goals

into a set of coherent output goals of different types. Hence, this holon can be dis-

covered, (re)used and evaluated dynamically, across various systems that require

this goal-transformation function, irrespectively of its internal design.

Progressive reactivity should be tuned so that the conflict-resolution implemen-

tation reacts to changes in the conflicting goal inputs faster than these inputs can

change; and slower than the lower-level holon to which the coherent goals are sent.

APPLICATION SCENARIO 3. MARKET-ORIENTED ENERGY DISTRIBUTION

(1) Overview and selected scenario: This example increases the scope and the

level of abstraction at which we analyse and design our system to the neigh-

bourhood level. Here, smart houses like the ones designed in examples 1 and 2

represent mere prosumers, characterised by the amount of power they consume

from or produce into the neighbourhood micro-grid. The new challenge here is

to regulate the prosumption of each house so that the overall grid consumption

and production level out; otherwise, the difference must be prosumed from the

larger grid, or blackouts may occur. This challenge is expressed as a new goal:

GProsN = {[Production ==Consumption],NeighbourhoodN ,every0.5s}.
This example illustrates a market-oriented solution for achieving GProsN . It is

based on offer-and-demand price settings, which aim to self-regulate the prosump-

tion of smart houses. This approach assumes that high power consumption prices

will deter consumption and encourage production at the house level; and vice-versa.

This represents a top-down goal definition and enforcement, via price regulation,

which can impact smart home internals by introducing new conflicts (as in exam-

ple 2). In turn, this may trigger bottom-up adaptation in house-level prosumptions,

which impact the overall neighbourhood prosumption. Such adaptations can lead to

price readjustments, which again influence house-level prosumptions (yoyo effect).

This approach is based on an example solution from the smart grid literature – i.e.

the PowerMatcher [KWK05].

Fig. 5.24 depicts a specific scenario within this example, involving two houses

(A and B). Each house is modelled as a holon, with an input comfort/cost goal

(provided), an output prosumption goal (required) and an output prosumption cost

goal (required). For simplicity, we only concentrate in this example on the part of the

process where each smart home requires a price for its predicted prosumption (via

its prosumption cost goal) and adapts its prosumption accordingly (automatically

or by asking the user); the actual electricity prosumption is not shown in Fig. 5.24.

The smart home model depicted here is an abstraction of the more detailed design

in examples 1 and 2.

All houses are integrated together into a neighbourhood holon, with an output

prosumption price goal (required). Another holon is the Pricing Authority, which

offers a prosumption pricing goal (provided). Requests for this goal result in a reply

5.3 Goal-oriented Holonic Systems 263

that specifies the price for the required prosumption. If the houses accept to prosume

from this provider then they must pay the quoted price.

Fig. 5.24: Top-down facilitation of bottom-up coordination

When the grid manager sets GProsN (step 0 in Fig. 5.24), for prosumption load-

balancing, the prosumtion pricing scheme of the Pricing Authority is regulated ac-

cordingly (not discussed here). After that, the prosumption pricing process for the

smart homes involves the following steps:

1. Each house is requested to reach a user-defined comfort goal GCm f ;

2. The smart houses (A and B) translate their comfort goals into prosumption re-

quirements GPros, as in example 1.

3. The neighbourhood holon aggregates these into a prosumption requirement

GProsN and forwards a price request to the Pricing Authority;

264 5 Building Organic Computing Systems

4. The Pricing Authority calculates global energy prices;

5. Prosumption prices are fed-back to the houses;

6. Prosumption prices are reformatted as necessary and fed-back to the users. Each

house (internal self-* loop) decides to buy/sell energy at the given price or to

update requirements; users may update comfort goals, as before. Afterwards the

actual prosumptions are performed, measured and balanced, if needed, from the

external grid (not shown in Fig. 5.24, for simplicty).

(2) Goal-based interactions & Holonic Properties:

Complexity from simplicity is reached by integrating multiple self-* prosumers (i.e.

smart houses structured as in Example 1) and regulating their behaviour to meet

grid- and house-level goals.

Semi-isolation is achieved as smart home internals only interact with the envi-

ronment via energy prosumptions, bidding requests and prices; their internal self-*

policies do not depend directly on those of other households, only via the global

prices. Similarly, the Pricing Authority’s internal strategies can optimise its goals,

such as profit, based on prosumption requests, while abiding legal regulations.

Abstraction is achieved by representing each home, and neighbourhood, only

via their aggregate bidding requests and resulting prosumptions. This facilitates the

management of large numbers of diverse households, which may join or leave the

grid without impacting the global management scheme.

Progressive reactivity is tuned so that the times of the bidding and price-setting

self-* processes, and of the actual prosumption, amount to sufficiently small inter-

vals, for instance 0.5s, for allowing grid controllers to react so as to achieve balance.

APPLICATION SCENARIO 4. SELF-GOVERNING ENERGY COMMONS

(1) Overview and selected scenario: This example discusses a solution based on

self-governance as an alternative to the prosumption management approach in ex-

ample 3. It shows how global goals, such as fairness in this case, can be defined

by users, or community members (bottom-up). Such global goals aim to help find a

balance among conflicting individual goals – for instance, everyone wants to appear

better off than their neighbours, yet also to avoid race conditions that would lead to

resource depletion (tragedy of the commons, see section 5.2). Global goals can then

be formalised as rules for regulating member behaviour (top-down) [DP14]. Sub-

sequent evaluations of individual goals can then lead to redefining collective goals

and rules (yoyo).

Fig. 5.25 illustrates the process for two users. The multi-layer holonic design

for translating collective goals into rules and then into rule enforcement is similar

to the one discussed in example 1 and hence simplified here. The scenario can be

described via the following steps:

5.3 Goal-oriented Holonic Systems 265

Fig. 5.25: Bottom-up collective goal definition, enforced top-down

1. Each user u in the shared neighbourhood n wishes to have more or at least as

much comfort as their neighbours (at every instant t): Gu = (better− than−
others;homeu; t);

2. Users soon realise that aiming to achieve their individual goals Gu leads to

escalating conflicts and race conditions detrimental to the entire community.

Hence, they negotiate in order to find a compromise;

3. The compromise is defined as a collective fairness goal Gn = (f airness;n;m),
which aims to reach equal comfort for all users in the neighbourhood n over

medium intervals m;

4. Gn is translated into prosumption rules: GPR = (rulesPR;n; t);
5. The prosumption rules GPR are enforced into each household;

6. The conformance of prosumptions in each household with respect to the rules

GPR is evaluated; and rewards / sanctions are distributed to households accord-

ingly;

7. The effectiveness of the rules GPR to reach the fairness goal Gn is assessed; and

the rules updated accordingly.

8. Fairness evaluations, based on house comfort measurements, are made available

to the collective;

266 5 Building Organic Computing Systems

9. Each user evaluates their position with respect to the overall fairness; and may

renegotiate (step 2); or leave the collective.

(2) Goal-based interactions & Holonic Properties:

Complexity from simplicity occurs here by integrating smart houses within a self-

governing community, with multiple goals, where houses are already self-* systems

of systems (as in example 1).

Semi-isolation is achieved in two interrelated ways. Firstly, the community mem-

bers that share the collective goal are identified and grouped into a neighbourhood

holon where they can self-organise and self-govern semi-independently from exter-

nal authorities or other members. Secondly, external authorities allow the commu-

nity to self-organise and self-govern, without interfering in their local regulations, as

long as they meet external policies and norms – such as constitutional laws [JPD15].

If individual goals evolve and are no longer represented by the collective goal, the

community holon may be dismantled, yet the smart homes remain.

Abstraction is achieved at the collective level by modelling each house only via

its aggregate energy production and appropriation, and its conformance to the pro-

sumption rules. The translation of the fairness goal into rules, as well as their en-

forcement and monitoring, can be achieved by member representatives, by elec-

tronic institutions, or both – yet this is not visible at the presented abstraction level.

Also, individual users see the entire collective only via its fairness indicator, without

access to details of other house profiles. At a higher abstraction level, different com-

munities in the grid may self-organise based on different rules, resulting in diversity

and plurality across the integrated community grid system.

Progressive reactivity should be tuned so that member prosumptions are faster

than the evaluation of their rule conformance; which is faster than the evaluation

(and update) of prosumption rules; in turn faster than the fairness goal management.

5.3.6 Conclusions

This section focused on some of the particularities of complex OC systems and the

challenges inherent in their modelling, development and administration. It argued

that as the complexity of OC systems and of their execution environments raises,

dynamic (self-)integration becomes an essential capability for their success. This

means that OC systems should be able to integrate (themselves) from resources dis-

covered opportunistically, at runtime, in order to achieve goals specified by their

stakeholders. The complexity of the resources that such OC systems integrate can

vary quite widely, from ‘traditional’ components with no self-* capabilities, through

single and collective self-adaptive systems (such as discussed in Sections 5.1 and 5.2

of this chapter) and all the way to entire systems-of-systems (the focus of this sec-

tion).

To support the engineering process of complex OC systems that offer such (self-)

integration functions, this section proposed a conceptual architectural model based

on a new paradigm – goal-oriented holonics (or Goal-oriented Things-of-Things

5.3 Goal-oriented Holonic Systems 267

– GoTT). This paradigm was defined by merging two important concepts. Firstly,

it defined goals as first class modelling elements, representing explicit reference

points for the systems to achieve when everything else may change in their internal

construction and external environments (though goals may also change). Secondly,

it identified several key properties of holonic designs observed in complex natu-

ral systems: constructing complexity from simplicity via encapsulated hierarchical

structures; which feature semi-isolation among their components (or holons); which

abstract their internal structures and behaviours for external observers and users;

and, which feature suitable time-tuning among their dynamic self-* processes, in or-

der to avoid oscillations and divergent behaviours. The conceptual model provided

pointers on how to use goal-orientation in order to achieve such holonic properties

in artificial OC systems.

Finally, the conceptual model was illustrated with several concrete examples

from the smart micro-grid domain.

It is essential to note that the proposed architectural model presented represents

research work in progress; rather than well-established, thoroughly-validated knowl-

edge. So far, it is based on observations from related scientific domains that face

similar complexity control problems, notably including natural systems, such as in-

dividual organisms and societies. These observations are merged with concepts from

adjacent Information and Communication Technology (ICT) areas, such as Software

Engineering (e.g. formal requirements, modularisation, and dynamic binding); self-

adapting, self-organising andMulti-Agent Systems (e.g. goal-orientation and decen-

tralised self-* functions); and concrete complex system designs in various applica-

tion domains, featuring hierarchical or multi-layered structures and characterised by

abstraction, semi-isolation and/or control time-tuning (e.g. communication protocol

stacks, automates, robotics, or energy systems).

Therefore, this section represents a research direction requiring significant fur-

ther work, which may, in fact, invalidate some of the initial assumptions and generic

design. Our objective here was merely to provide a general intuition on how complex

systems could be successfully designed and managed based on the goal-oriented

holonics paradigm. If this research direction triggers and/or leads the way for fur-

ther research, that may require a refinement, or even a rectification of this paradigm,

then, we would have achieved our objective of helping to address the complexity

problem in engineered OC systems.

Further Reading

For further details on hierarchical and holonic systems, mainly inspired from

living systems, social organisations and economics, the reader may refer

to [Sim62], [Sim96] and [Koe67]. [Kou+17a] provides a broad introduc-

tion to the novel area of Self-Aware Computing Systems, including many

concerns that are relevant to the development of Organic Computing sys-

268 5 Building Organic Computing Systems

tems – e.g. goal-orientation, learning, knowledge representation, reasoning,

self-adaptation, reporting, architectural aspects, testing, performance opti-

misation and so on. Similarly, [LMD13] offers a practical introduction to

Autonomic Computing, concentrating on the core principles, design and im-

plementation methods; and including monitoring, analysis, planning and ex-

ecution functions, which are also relevant to the development of Organic

Systems.

Finally, a lot of specific research and associated literature is available on each

one of the concerns discussed in this section, including goals and require-

ments engineering (e.g. [Yu+11]) Software Engineering for Self-Adaptive

Systems (e.g. [Che+09]), Component-Oriented Software engineering (e.g.

[Szy97]); and adjacent topics, such as machine learning, evolutionary com-

puting, search-oriented optimisation, multi-criteria decision-making, and so

on – the curious reader is encouraged to use any library or online search en-

gine to explore the vast body of ever-increasing literature available on these

topics.

5.3 Goal-oriented Holonic Systems 269

References

[AF06] D. P. Anderson and G. Fedak. ‘The computational and storage po-

tential of volunteer computing’. In: Cluster Computing and the Grid,

2006. CCGRID 06. Sixth IEEE International Symposium on. Vol. 1.

IEEE. 2006, pp. 73–80.

[Akk10] J. op Akkerhuis. ‘The Operator Hierarchy. A chain of closures linking

matter, life and artificial intelligence’. PhD thesis. Radboud University

Nijmegen, 2010.

[Ang+06] C. Anglano, J. Brevik, M. Canonico, D. Nurmi and R. Wolski. ‘Fault-

aware scheduling for Bag-of-Tasks applications on Desktop Grids’.

In: 2006 7th IEEE/ACM International Conference on Grid Comput-

ing. IEEE. 2006, pp. 56–63.

[Ang+08] C. Anglano, M. Canonico, M. Guazzone, M. Botta, S. Rabellino, S.

Arena and G. Girardi. ‘Peer-to-peer desktop grids in the real world:

the ShareGrid project’. In: Cluster Computing and the Grid, 2008.

CCGRID’08. 8th IEEE International Symposium on. IEEE. 2008,

pp. 609–614.

[AP08] A. Artikis and J. Pitt. ‘Specifying open agent systems: A survey’. In:

International Workshop on Engineering Societies in the Agents World.

Springer. 2008, pp. 29–45.

[Bal+13] T. Balke, C. da Costa Pereira, F. Dignum, E. Lorini, A. Rotolo, W.

Vasconcelos and S. Villata. ‘Norms in MAS: definitions and related

concepts’. In: Dagstuhl Follow-Ups 4 (2013).

[Ber+10] Y. Bernard, L. Klejnowski, J. Hähner and C. Müller-Schloer. ‘To-

wards trust in desktop grid systems’. In: Proceedings of the 2010

10th IEEE/ACM International Conference on Cluster, Cloud and Grid

Computing. IEEE Computer Society. 2010, pp. 637–642.

[Bil93] D. Billington. ‘Defeasible logic is stable’. In: Journal of logic and

computation 3.4 (1993), pp. 379–400.

[Bin06] K. Binmore. ‘Origins of fair play: Volume 614 of papers on economics

and evolution’. In: Max Planck Institute of Economics.[Online] Avail-

able at https://papers. econ. mpg. de/evo/discussionpapers/2006-14.

pdf (2006).

[BPV09] G. Boella, G. Pigozzi and L. Van Der Torre. ‘Normative systems

in computer science-ten guidelines for normative multiagent sys-

tems’. In: Dagstuhl seminar proceedings. Schloss Dagstuhl-Leibniz-

Zentrum für Informatik. 2009.

[Bro86] R. A. Brooks. ‘A robust layered control system for a mobile robot’. In:

IEEE Journal of Robotics and Automation 2.1 (Mar. 1986), pp. 14–23.

ISSN: 0882-4967.

[Bur+08] S. Burmester, H. Giese, E. Münch, O. Oberschelp, F. Klein and P.

Scheideler. ‘Tool support for the design of self-optimizing mecha-

tronic multi-agent systems’. In: Int. J. on Software Tools for Tech-

nology Transfer 10 (3 2008), pp. 207–222. ISSN: 1433-2779.

270 5 Building Organic Computing Systems

[BZ96] J. C. Bennett and H. Zhang. ‘WF 2 Q: worst-case fair weighted fair

queueing’. In: INFOCOM’96. Fifteenth Annual Joint Conference of

the IEEE Computer Societies. Networking the Next Generation. Pro-

ceedings IEEE. Vol. 1. IEEE. 1996, pp. 120–128.

[CB11] R. Centeno and H. Billhardt. ‘Using incentive mechanisms for an

adaptive regulation of open multi-agent systems’. In: IJCAI Proceedings-

International Joint Conference on Artificial Intelligence. Vol. 22. 1.

Citeseer. 2011, p. 139.

[CBH11] R. Centeno, H. Billhardt and R. Hermoso. ‘An adaptive sanctioning

mechanism for open multi-agent systems regulated by norms’. In:

2011 IEEE 23rd International Conference on Tools with Artificial In-

telligence. IEEE. 2011, pp. 523–530.

[CBL04] A. J. Chakravarti, G. Baumgartner andM. Lauria. ‘Application-specific

scheduling for the organic grid’. In: Proceedings of the 5th IEEE/ACM

International Workshop on Grid Computing. IEEE Computer Society.

2004, pp. 146–155.

[CCD98] R. Conte, C. Castelfranchi and F. Dignum. ‘Autonomous norm accep-

tance’. In: International Workshop on Agent Theories, Architectures,

and Languages. Springer. 1998, pp. 99–112.

[CF10] C. Castelfranchi and R. Falcone. Trust theory: A socio-cognitive and

computational model. Vol. 18. John Wiley & Sons, 2010.

[Che+09] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi and J. Magee.

Software Engineering for Self-Adaptive Systems. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2009, pp. 1–26. ISBN: 978-3-642-02161-9.

DOI: 10.1007/978-3-642-02161-9_1. URL: http://dx.

doi.org/10.1007/978-3-642-02161-9_1.

[CHK05] H. Choset, S. Hutchinson and G. Kantor. Principles of Robot Motion:

Theory, Algorithms, and Implementations. MIT Press, 2005.

[Cho+07] S. Choi, H. Kim, E. Byun, M. Baik, S. Kim, C. Park and C. Hwang.

‘Characterizing and classifying desktop grid’. In: Seventh IEEE In-

ternational Symposium on Cluster Computing and the Grid (CC-

Grid’07). 2007.

[Cho+08] S. Choi, R. Buyya, H. Kim, E. Byun and J. Gil. ‘A taxonomy of desk-

top grids and its mapping to state of the art systems’. In: Grid Com-

puting and Distributed Systems Laboratory, The University of Mel-

bourne, Tech. Rep (2008).

[DDL12] B. Debbabi, A. Diaconescu and P. Lalanda. ‘Controlling Self-Organising

Software Applications with Archetypes’. In: Sixth IEEE International

Conference on Self-Adaptive and Self-Organizing Systems, (SASO

2012), Lyon, France, September 10-14, 2012. 2012, pp. 69–78. DOI:

10.1109/SASO.2012.21. URL: http://dx.doi.org/10.

1109/SASO.2012.21.

[Des16] J.-L. Dessalles. ‘A Cognitive Approach to Relevant Argument Gen-

eration’. In: Principles and Practice of Multi-Agent Systems - 2015

International Conference. Ed. by M. Baldoni, C. Baroglio and F. Bex.

5.3 Goal-oriented Holonic Systems 271

Springer, 2016. URL: http://www.dessalles.fr/papers/

Dessalles_16061002.pdf.

[Dia+16] A. Diaconescu, S. Frey, C. Müller-Schloer, J. Pitt and S. Tomforde.

‘Goal-Oriented Holonics for Complex System (Self-)Integration: Con-

cepts and Case Studies’. In: 10th IEEE International Conference on

Self-Adaptive and Self-Organizing Systems, (SASO 2016), Augsburg,

Germany, Sept. 12-16, 2016. 2016, pp. 100–109. DOI: 10.1109/

SASO.2016.16. URL: http://dx.doi.org/10.1109/

SASO.2016.16.

[Dia+17] A. Diaconescu, K. L. Bellman, L. Esterle, H. Giese, S. Goetz, P.

Lewis and A. Zisman. ‘Generic Architectures for Collective Self-

Aware Computing Systems’. In: Self-Aware Computing Systems. Ed.

by S. Kounev, J. O. Kephart, A. Milenkoski and X. Zhu. Springer

International Publishing, 2017. DOI: 10.1007/978-1-4471-

5007-7.

[DKS89] A. Demers, S. Keshav and S. Shenker. ‘Analysis and simulation of a

fair queueing algorithm’. In: ACM SIGCOMM Computer Communi-

cation Review. Vol. 19. 4. ACM. 1989, pp. 1–12.

[DP14] A. Diaconescu and J. Pitt. ‘Holonic Institutions for Multi-scale Poly-

centric Self-governance’. In: Coordination, Organizations, Institu-

tions, and Norms in Agent Systems X - COIN 2014 International Work-

shops, COIN@AAMAS, Paris, France, May 6, 2014, COIN@PRICAI,

Gold Coast, QLD, Australia, December 4, 2014, Revised Selected Pa-

pers. 2014, pp. 19–35. DOI: 10.1007/978-3-319-25420-3_2.

URL: http://dx.doi.org/10.1007/978-3-319-25420-

3_2.

[Ede+16] S. Edenhofer, S. Tomforde, J. Kantert, L. Klejnowski, Y. Bernard, J.

Hähner and C. Müller-Schloer. ‘Trust Communities: An Open, Self-

Organised Social Infrastructure of Autonomous Agents’. In: Trust-

worthy Open Self-Organising Systems. Ed. by W. Reif, G. Anders, H.

Seebach, J.-P. Steghöfer, E. André, J. Hähner, C. Müller-Schloer and

T. Ungerer. Cham: Springer International Publishing, 2016, pp. 127–

152. ISBN: 978-3-319-29201-4. DOI: 10.1007/978- 3- 319-

29201-4_5. URL: http://dx.doi.org/10.1007/978-3-

319-29201-4_5.

[FDD12] S. Frey, A. Diaconescu and I. M. Demeure. ‘Architectural Integration

Patterns for Autonomic Management Systems’. In: 9th IEEE Interna-

tional Conference and Workshops on the Engineering of Autonomic

and Autonomous Systems (EASe 2012), Novi Sad, Serbia, 11-13 April.

2012.

[Fre+15] S. Frey, A. Diaconescu, D. Menga and I. M. Demeure. ‘A Generic

Holonic Control Architecture for Heterogeneous Multiscale and Mul-

tiobjective Smart Microgrids’. In: TAAS 10.2 (2015), 9:1–9:21. DOI:

10.1145/2700326. URL: http://doi.acm.org/10.

1145/2700326.

272 5 Building Organic Computing Systems

[GRB07] G. Governatori, A. Rotolo and L. A. BIO. ‘Norms, Beliefs, Intentions

in Defeasible Logic’. In: Normative Multi-agent Systems, Dagstuhl

Seminar Proceedings. Vol. 7122. 2007.

[Har68] G. Hardin. ‘The tragedy of the commons. The population problem has

no technical solution; it requires a fundamental extension in morality.’

In: Science (New York, NY) 162.3859 (1968), p. 1243.

[HBO10] R. Hermoso, H. Billhardt and S. Ossowski. ‘Role evolution in open

multi-agent systems as an information source for trust’. In: Proceed-

ings of the 9th International Conference on Autonomous Agents and

Multiagent Systems: volume 1-Volume 1. International Foundation for

Autonomous Agents and Multiagent Systems. 2010, pp. 217–224.

[Hew91] C. Hewitt. ‘Open information systems semantics for distributed artifi-

cial intelligence’. In: Artificial intelligence 47.1 (1991), pp. 79–106.

[HL04] B. Horling and V. Lesser. ‘A survey of multi-agent organizational

paradigms’. In: The Knowledge Engineering Review 19.04 (2004),

pp. 281–316.

[HW11] C. D. Hollander and A. S. Wu. ‘The current state of normative agent-

based systems’. In: Journal of Artificial Societies and Social Simula-

tion 14.2 (2011), p. 6.

[Jac93] O. Jacobs. Introduction to Control Theory. 2nd. Oxford, UK: Oxford

University Press, 1993.

[Jai+96] R. Jain, G. Babic, B. Nagendra and C. Lam. ‘Fairness, call estab-

lishment latency and other performance metrics’. In: ATM-Forum 96

(1173), 1–6. Tech. Rep. ATM Forum/96-1173, ATM Forum Docu-

ment. 1996.

[JDT11] J. Jiang, V. Dignum and Y. H. Tan. ‘An Agent Based Inter-organizational

Collaboration Framework: OperA+’. In: 2011 IEEE/WIC/ACM Inter-

national Conferences on Web Intelligence and Intelligent Agent Tech-

nology. Vol. 3. Aug. 2011, pp. 21–24. DOI: 10.1109/WI-IAT.

2011.165.

[JPD15] J. Jiang, J. Pitt and A. Diaconescu. ‘Rule Conflicts in Holonic Insti-

tutions’. In: 3rd Workshop on Fundamentals of Collective Adaptive

Systems (FoCAS 2015), part of 2015 IEEE International Conference

on Self-Adaptive and Self-Organizing Systems Workshops (SASOW

2015). Sept. 2015, pp. 49–54. DOI: 10.1109/SASOW.2015.13.

[Kan+14a] J. Kantert, S. Bödelt, S. Edenhofer, S. Tomforde, J. Hähner and C.

Müller-Schloer. ‘Interactive Simulation of an Open Trusted Desktop

Grid System with Visualisation in 3D’. In: 2014 IEEE Eighth Inter-

national Conference on Self-Adaptive and Self-Organizing Systems.

IEEE. 2014, pp. 191–192.

[Kan+14b] J. Kantert, L. Klejnowski, Y. Bernard and C. Müller-Schloer. ‘Influ-

ence of Norms on Decision Making in Trusted Desktop Grid Systems-

Making Norms Explicit.’ In: ICAART (2). 2014, pp. 278–283.

[Kan+14c] J. Kantert, H. Scharf, S. Edenhofer, S. Tomforde, J. Hähner and

C. Müller-Schloer. ‘A Graph Analysis Approach to Detect Attacks

5.3 Goal-oriented Holonic Systems 273

in Multi-agent Systems at Runtime’. In: 2014 IEEE Eighth Inter-

national Conference on Self-Adaptive and Self-Organizing Systems.

IEEE. 2014, pp. 80–89.

[Kan+15a] J. Kantert, S. Edenhofer, S. Tomforde, J. Hähner and C. Müller-

Schloer. ‘Defending autonomous agents against attacks in multi-agent

systems using norms’. In: Proceedings of the 7th International Con-

ference on Agents and Artificial Intelligence. 2015, pp. 149–156.

[Kan+15b] J. Kantert, H. Spiegelberg, S. Tomforde, J. Hähner and C. Müller-

Schloer. ‘Distributed rendering in an open self-organised trusted desk-

top grid’. In: Autonomic Computing (ICAC), 2015 IEEE International

Conference on. IEEE. 2015, pp. 267–272.

[Kan+15c] J. Kantert, S. Wildemann, G. von Zengen, S. Edenhofer, S. Tomforde,

L. Wolf, J. Hähner and C. Müller-Schloer. ‘Improving reliability and

endurance using end-to-end trust in distributed low-power sensor net-

works’. In: International Conference on Architecture of Computing

Systems. Springer. 2015, pp. 135–145.

[Kan+16] J. Kantert, L. Klejnowski, S. Edenhofer, S. Tomforde and C. Müller-

Schloer. ‘A Threatmodel for Trust-based Systems Consisting of Open,

Heterogeneous and Distributed Agents’. In: Proceedings of the 8th In-

ternational Conference on Agents and Artificial Intelligence (ICAART

2016), Volume 1, Rome, Italy, February 24-26, 2016. 2016, pp. 173–

180. DOI: 10.5220/0005696801730180. URL: http://dx.

doi.org/10.5220/0005696801730180.

[KC03] J. Kephart and D. Chess. ‘The Vision of Autonomic Computing’. In:

IEEE Computer 36.1 (2003), pp. 41–50.

[Kep+17] J. O. Kephart, A. Diaconescu, H. Giese, A. Robertsson, T. Abdelza-

her, P. Lewis, A. Filieri, L. Esterle and S. Frey. ‘Self-Aware Com-

puting Systems’. In: ed. by S. Kounev, J. Kephart, A. Milenkoski

and X. Zhu. Springer Verlag, Berlin Heidelberg, 2017. Chap. Self-

adaptation in Collective Self-aware Computing Systems, pp. 401–435.

ISBN: 978-3-319-47474-8. URL: http://www.springer.com/

us/book/9783319474724.

[Kle14] L. Klejnowski. ‘Trusted community: a novel multiagent organisation

for open distributed systems’. PhD thesis. Hannover, Univ., Diss.,

2014, 2014.

[Koe67] A. Koestler. The Ghost in the Machine. 1st ed. GATEWAY EDI-

TIONS, Henry Regnery Co., 1967.

[Kou+17a] ‘Self-Aware Computing Systems’. In: ed. by S. Kounev, J. Kephart,

A. Milenkoski and X. Zhu. Springer Verlag, Berlin Heidelberg, 2017.

ISBN: 978-3-319-47474-8. URL: http://www.springer.com/

us/book/9783319474724.

[Kou+17b] S. Kounev, J. O. Kephart, A. Milenkoski and X. Zhu. Self-aware Com-

puting Systems. Berlin / Heidelberg, DE: Springer Verlag, 2017.

[KWK05] J. K. Kok, C. J. Warmer and I. G. Kamphuis. ‘PowerMatcher: Mul-

tiagent Control in the Electricity Infrastructure’. In: Proceedings of

274 5 Building Organic Computing Systems

the Fourth International Joint Conference on Autonomous Agents

and Multiagent Systems. AAMAS ’05. The Netherlands: ACM, 2005,

pp. 75–82. ISBN: 1-59593-093-0. DOI: 10 . 1145 / 1082473 .

1082807. URL: http://doi.acm.org/10.1145/1082473.

1082807.

[Lam01] A. van Lamsweerde. ‘Goal-oriented requirements engineering: a guided

tour’. In: Proceedings Fifth IEEE International Symposium on Re-

quirements Engineering. 2001, pp. 249–262. DOI: 10.1109/ISRE.

2001.948567.

[LB01] C. Landauer and K. L. Bellman. ‘New Architectures for Constructed

Complex Systems’. In: Appl. Math. Comput. 120.1-3 (May 2001),

pp. 149–163. ISSN: 0096-3003. DOI: 10.1016/S0096-3003(99)

00240-4. URL: http://dx.doi.org/10.1016/S0096-

3003(99)00240-4.

[LB99] C. Landauer and K. L. Bellman. ‘Problem Posing Interpretation of

Programming Languages’. In: Proceedings of the Thirty-Second An-

nual Hawaii International Conference on System Sciences-Volume 3

- Volume 3. HICSS’99. Washington, DC, USA: IEEE Computer So-

ciety, 1999, pp. 3007–. ISBN: 0-7695-0001-3. URL: http://dl.

acm.org/citation.cfm?id=874070.876075.

[Lew+17] P. Lewis, K. Bellman, C. Landauer, L. Esterle, K. Glette, A. Dia-

conescu and H. Giese. ‘Towards A Framework for the Levels and As-

pects of Self-Aware Computing Systems’. In: Self-Aware Computing

Systems. Ed. by S. Kounev, J. O. Kephart, A. Milenkoski and X. Zhu.

Springer International Publishing, 2017. DOI: 10.1007/978-1-

4471-5007-7.

[LMD13] P. Lalanda, J. A. McCann and A. Diaconescu. Autonomic Comput-

ing - Principles, Design and Implementation. Undergraduate Topics

in Computer Science. Springer, 2013. ISBN: 978-1-4471-5006-0. DOI:

10.1007/978-1-4471-5007-7. URL: http://dx.doi.

org/10.1007/978-1-4471-5007-7.

[MF05] S. Mcgregor and C. Fernando. ‘Levels of Description: A Novel Ap-

proach to Dynamical Hierarchies’. In: Artificial Life 11.4 (2005),

pp. 459–472. DOI: 10.1162/106454605774270615.

[Nas51] J. Nash. ‘Non-cooperative games’. In: Annals of mathematics (1951),

pp. 286–295.

[New03] M. E. Newman. ‘The structure and function of complex networks’. In:

SIAM review 45.2 (2003), pp. 167–256.

[Nut01] D. Nute. ‘Defeasible logic’. In: International Conference on Applica-

tions of Prolog. Springer. 2001, pp. 151–169.

[Nut88] D. Nute. ‘Defeasible reasoning: a philosophical analysis in prolog’.

In: Aspects of Artificial Intelligence. Springer, 1988, pp. 251–288.

[Nut94] D. Nute. Defeasible logic, Handbook of logic in artificial intelligence

and logic programming (vol. 3): nonmonotonic reasoning and uncer-

tain reasoning. 1994.

5.3 Goal-oriented Holonic Systems 275

[NWH02] L. Nolle, K. C. P. Wong and A. A. Hopgood. ‘DARBS: A Distributed

Blackboard System’. In: Research and Development in Intelligent Sys-

tems XVIII. Springer London, 161170, 2002.

[OG05] M. Oussalah and N. Griffiths. ‘Cooperative clans’. In: Kybernetes

34.9/10 (2005), pp. 1384–1403.

[Osb04] M. J. Osborne. An introduction to game theory. Vol. 3. 3. Oxford Uni-

versity Press New York, 2004.

[Ost+90] E. Ostrom et al. Governing the commons: The evolution of institutions

for collective action. 1990.

[PSA11] J. Pitt, J. Schaumeier and A. Artikis. ‘The axiomatisation of socio-

economic principles for self-organising systems’. In: Self-Adaptive

and Self-Organizing Systems (SASO), 2011 Fifth IEEE International

Conference on. IEEE. 2011, pp. 138–147.

[Raw71] J. Rawls. A Theory of Justice. Belknap Press of Harvard University

Press, 1971.

[RG91] A. Rao and P. M. Georgeff. ‘Modeling Rational Agents within a BDI

Architecture’. In: Proceedings of the 2nd International Conference

on Principles of Knowledge Representation and Reasoning (KR91).

Morgan Kaufmann, Mar. 1991, pp. 473–484.

[RNI95] S. Russell, P. Norvig and A. Intelligence. ‘A modern approach’. In:

Artificial Intelligence. Prentice-Hall, Egnlewood Cliffs 25 (1995).

[RZ94] J. S. Rosenschein and G. Zlotkin. Rules of encounter: designing con-

ventions for automated negotiation among computers. MIT press,

1994.

[Sar05] G. Sartor. ‘Legal reasoning’. In: A Treatise of Legal Philosophy and

General Jurisprudence (2005).

[SC11] B. T. R. Savarimuthu and S. Cranefield. ‘Norm creation, spreading

and emergence: A survey of simulation models of norms in multi-

agent systems’. In: Multiagent and Grid Systems 7.1 (2011), pp. 21–

54.

[Sim62] H. A. Simon. ‘The Architecture of Complexity’. In: American Philo-

sophical Society 106 (1962).

[Sim96] H. A. Simon. The Sciences of the Artificial. MIT Press, 1996. ISBN:

9780262264495. URL: https://books.google.fr/books?

id=k5Sr0nFw7psC.

[Sin+13] M. P. Singh, M. Arrott, T. Balke, A. K. Chopra, R. Christiaanse, S.

Cranefield, F. Dignum, D. Eynard, E. Farcas, N. Fornara et al. The uses

of norms. Vol. 4. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,

2013.

[Sin99] M. P. Singh. ‘An ontology for commitments in multiagent systems’.

In: Artificial intelligence and law 7.1 (1999), pp. 97–113.

[Smi80] R. G. Smith. ‘The Contract Net Protocol: High-Level Communication

and Control in a Distributed Problem Solver’. In: IEEE Transactions

on Computers C-29.12 (Dec. 1980), pp. 1104–1113. ISSN: 0018-9340.

DOI: 10.1109/TC.1980.1675516.

276 5 Building Organic Computing Systems

[Ste+14] J.-P. Steghöfer, G. Anders, J. Kantert, C. Müller-Schloer and W.

Reif. ‘An effective implementation of norms in trust-aware open self-

organising systems’. In: Self-Adaptive and Self-Organizing Systems

Workshops (SASOW), 2014 IEEE Eighth International Conference on.

IEEE. 2014, pp. 76–77.

[Szy97] C. Szyperski. Component Software: Beyond Object-oriented Program-

ming. ACM Press, 1997.

[TB95] R. Tuomela and M. Bonnevier-Tuomela. ‘Norms and Agreements’.

In: E. J. of Law, Philosophy and Computer Science 5 (1995), pp. 41–

46.

[Ten00] D. Tennenhouse. ‘Proactive Computing’. In: Communications of the

ACM 43.5 (2000), pp. 43–50. ISSN: 0001-0782. DOI: http://doi.

acm.org/10.1145/332833.332837.

[Tom+11a] S. Tomforde, H. Prothmann, J. Branke, J. Hähner, M. Mnif, C. Müller-

Schloer, U. Richter and H. Schmeck. ‘Observation and Control of Or-

ganic Systems’. In: Organic Computing - A Paradigm Shift for Com-

plex Systems. Ed. by C. Müller-Schloer, H. Schmeck and T. Ungerer.

Autonomic Systems. Birkhäuser Verlag, 2011, pp. 325–338.

[Tom+11b] S. Tomforde, H. Prothmann, J. Branke, J. Hähner, M. Mnif, C. Müller-

Schloer, U. Richter and H. Schmeck. ‘Observation and control of or-

ganic systems’. In: Organic Computing—A Paradigm Shift for Com-

plex Systems. Springer, 2011, pp. 325–338.

[Tom+14] S. Tomforde, J. Haehner, H. Seebach, W. Reif, B. Sick, A. Wacker

and I. Scholtes. ‘Engineering and mastering interwoven systems’. In:

Architecture of Computing Systems (ARCS), 2014 27th International

Conference on. VDE. 2014, pp. 1–8.

[Tom+16] S. Tomforde, S. Rudolph, K. Bellman and R. Wurtz. ‘An Organic

Computing Perspective on Self-Improving System Interweaving at

Runtime’. In: 2016 IEEE International Conference on Autonomic

Computing (ICAC). July 2016, pp. 276–284. DOI: 10.1109/ICAC.

2016.15.

[UG13] A. Urzică and C. Gratie. ‘Policy-based instantiation of norms in

MAS’. In: Intelligent Distributed Computing VI. Springer, 2013, pp. 287–

296.

[VBH08] P. Valckenaers, H. V. Brussel and T. Holvoet. ‘Fundamentals of Holonic

Systems and Their Implications for Self-Adaptive and Self-Organizing

Systems’. In: Proceedings of the 2008 Second IEEE International

Conference on Self-Adaptive and Self-Organizing Systems Workshops.

SASOW ’08. Washington, DC, USA: IEEE Computer Society, 2008,

pp. 168–173. ISBN: 978-0-7695-3553-1. DOI: 10.1109/SASOW.

2008.29. URL: http://dx.doi.org/10.1109/SASOW.

2008.29.

[Von63] G. H. VonWright. ‘Norm and action: a logical enquiry’. In: Routledge

& Kegan Paul, London / UK (1963).

