
Self-integrating Organic Control Systems:
from Crayfish to Smart Homes

Ada Diaconescu
Telecom ParisTech, LTCI, IMT, FR
ada.diaconescu@telecom-paristech.fr

Pembe Mata
Telecom ParisTech, IMT, FR

matapembe@gmail.com

Kirstie Bellman
Topcy House Consulting, USA

bellmanhome@yahoo.com

Abstract—Survival in complex environments, for both natural
and artificial systems, requires behavioural adaptation to common
changes and behavioural innovation to face the unexpected. The
challenge here is to produce a vast variety of behaviours, each
adapted to current circumstances, while relying on a limited
amount of resources (e.g. sensors, controllers and actuators),
within a ‘suitable’ time-frame. Drawing inspiration from neural
and behavioural studies on crayfish, this position paper brings
to the fore several key design features that enable organisms to
address this challenge. It then proposes a similar design for artifi-
cial controllers, based on: i) an extensible set of reusable control
units; and, ii) a goal-driven, context-sensitive (self-)integration
process for assembling control units into a wide variety of
integrated system controllers. Pre-integrated sub-controllers can
also be merged, to improve efficiency while avoiding conflicts.
The proposal is illustrated via a proof-of-concept implementation
for the smart home, where users can add and remove goals and
devices at runtime and the controller is adapted accordingly. This
study brings us closer to our long-term objective of defining
reusable methodologies and platforms for the development of
self-* systems running in complex unpredictable environments,
notably including smart homes, cities, vehicular networks and
electrical grids, merged via the Internet of Things, and of People.

Index Terms—adaptive self-integration, control systems, goals,
self-optimisation, conflict resolution, bio-inspiration, smart home

I. INTRODUCTION

Survival in complex competitive environments, for both
natural and artificial systems, requires behavioural adaptation
to common changes and behavioural innovation to face the
unexpected. Yet, in complex environments, the number of
possible situations is rather vast and hence predicting all
of them is impossible. Moreover, the amount of internal
resources (e.g. sensors, controllers and actuators) available
to a system is necessarily limited, and hence, developing
and maintaining separate control mechanisms for producing
correspondingly vast varieties of behaviours is infeasible. The
resulting challenge is two-fold: i) how to produce a vast variety
of behaviours from limited resources?; and ii) how to produce
an adapted behaviour in each situation within a ‘limited’ time?

This position paper aims to tackle this challenge. Firstly,
it relies on neural and behavioural studies on crayfish to
highlight three key design features of nervous control systems.
Secondly, it shows how similar designs can be adopted for
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developing artificial control systems, and uses smart homes as
an illustrative application domain.

The essential design features observed in crayfish are: i)
neural configuration: reusability of neurons with different
output configurations for producing different behaviours when
integrated with other neurons; ii) behavioural integration:
reusability of pre-integrated neural circuitries that can merge
spontaneously for producing composed behaviours; and, iii)
reafference principle: enabling afferent signals (i.e. reference
inputs) to be achieved by context-sensitive neural feedback
loops. Notably, for efficiency reasons, neural circuitries are
organised in a hierarchical manner, with higher-level neurons
mediating and controlling the actions of lower-level ones.
Conflicts are handled via inhibition of neural outputs.

Based on these principles, we propose a design for artificial
controller based on: i) control units (CUs): reusable control
functions that can be configured to produce different control
behaviours when integrated with other CUs; ii) integrated
controllers (ICs): reusable assemblies of CUs that can be
merged to produce more complicated behaviours; iii) goal-
orientation: (self-)integration of CUs into ICs, and of ICs
into more complex ICs is driven by stakeholder goals (refer-
ence inputs). ICs are organised in a hierarchical manner, and
conflicts managed via special-purpose resolution functions.

The key advantage of this design consists in the wide
variety of control behaviours that it can produce from limited
resource sets. Generating control behaviours that are well-
adapted to their environment, and to their goals, is achieved:
via pre-wired integration in common cases; and, via trial-
and-error learning-based integration for unexpected cases.
More advanced learning techniques, e.g. prediction-based, will
be studied in future work. Once acquired by learning, new
behaviours can be reused (as reflexes) in similar contexts.

We implemented a proof-of-concept smart home controller
to illustrate these capabilities. The controller self-adapts to the
runtime addition and removal of user goals (e.g. temperature,
security and energy costs) and of ‘smart’ devices (e.g. heaters,
thermometers, window blinds) by integrating pre-existing soft-
ware modules (CUs) and behavioural composites (ICs), while
handling conflicts. Integration here implies interconnection,
configuration, communication and time-coordination among
CUs, which may be added and removed during runtime.

The initial success of this prototype supports the claim
that the proposed design enables the integration of pre-



wired control behaviours for handling known situations, with
dynamically-learned composite behaviours for dealing with
new circumstances. Even if the learning process in this initial
implementation is rather basic – e.g. CUs added by hand
during runtime and implemented to ensure successful inte-
gration with existing CUs – we show that the underlying
design provides the needed organisation and runtime changes
for context-dependent adaptations. These results pave the way
for achieving reusable platforms for developping viable control
systems for complex unpredictable environments.

II. ADAPTIVE NEURAL INTEGRATION IN CRAYFISH

A. Overview of key properties

We consider crayfish as a representative example of inverte-
brate organism with relatively simple nervous system, which,
according to numerous studies (e.g. [1]–[3]), can produce a
wide range of behaviours (e.g. types of movement) in response
to various situations (e.g. combinations of external stimuli and
internal state); and learn new behaviours in new situations.
Interestingly, this wide behavioural diversity is based on a
limited number of neurons, sensory and motor components.
The decisive underlying characteristic is the ability to generate
complex behaviours (e.g. escaping a threat) from an ordered
sequence of simpler behavioural units, of general purpose
(e.g. various abdomen contractions and tail flips for leaping
and swimming). This can be achieved via a hierarchical
neural organisation, where ‘higher-level’ neural circuitry (i.e.
coordination) can adapt, in a context-sensitive manner, the
integration of ‘lower-level’ neural circuitry (i.e. control of
simpler movements), leading to various composite behaviours.

Three key design features can be identified here:
• Neural configuration: studied at the neural level [2], this

design feature consists in reusing individual neurons with
different configurations, for producing different outputs,
in different contexts. ‘Configuration’ is achieved via
inhibitions from ‘higher-level’ context-sensitive neurons,
for preventing conflicts with other active elements, and
via excitation for supporting the co-occurrence among
compatible elements. This improves efficiency by reusing
control resources to produce basic behavioural variants.

• Behavioural integration: studied at the behavioural level
[1], [3], this design feature enables merging of individual
neural circuitries for obtaining composite behaviours in
complex situations. Taken separately, each neural cir-
cuitry produces a relatively simple behaviour in response
to common stimuli. Merged behaviours can provide more
complex responses and even react to new combinations
of stimuli. This also improves efficiency by reusing pre-
integrated behaviours to produce new ones.

• Reafference principle: studied at both neural and be-
havioural levels [4], this design feature enables input
signals from ‘higher-level’ neurons to be enacted irre-
spectively of a changing context (e.g. a fish maintaining
its position despite water currents that tend to displace
it). Input signals are enacted via ‘lower-level’ neural

circuitry that adapts its efferent signals (e.g. commands
to muscles), based on afferent feedback (e.g. signals from
muscles and environment) – similarly to feedback in
‘classic’ control theory.

We look into these mechanisms in more detail next.

B. Adaptive neural configuration

To illustrate this mechanism, we focus on the way in which,
in crayfish, a pair of pre-motor inter-neurons, the I3’s, are
engaged in different types of tail-flips during various escape
actions [2]. For the purpose of our discussion we will focus
on how the I3’s dendrites (i.e. “inputs”) can be excited by
three kinds of command neurons: i) the medial giant (MG)
neurons – for escaping from frontal threats via a backward
leap; ii) the lateral giant (LG) neurons – for escaping from
threats around the tail via a somersault; and, iii) non-giant
(NonG), ‘voluntary’, circuitry – for swimming away from less
urgent threats. The MG and LG mediate rapid stereotyped
reactions to sudden threats; while the NonG mediate aleatory
trajectories in response to progressively developing threats.

These three types of escape movements – backward or
forward leaps, and aleatory swimming – are achieved via dif-
ferent types abdomen contractions and complementary kinds
of tail flips. These must be configured to produce coherent
movement. The I3’s axons (i.e. neural “outputs”) connect to
the posterior and ventral telson flexor (VTF) motoneurons,
which are in turn connected to the crayfish VTF muscles,
located in the tail fan. Contracting the VTF muscles produces
tail flips that help with backward movement. These are suitable
for escaping from forward threats, but not from backward
threats. Hence, the I3’s should be inhibited in the latter case.
However, the I3’s axons also connect, indirectly, to neurons
that inhibit afferent nerves (AFF) located in the tail fan. This
afferent inhibition cancels reafference, which would otherwise
be caused by the sudden vigorous tail-flips and would hamper
rapid escape. Hence, the I3’s should be recruited.

We notice that during backward escape the I3’s activation
is subject to conflict – there is a need to only activate the I3’s
afferent suppression signals while not activating its contraction
of the VTF muscles. The LG neurons ‘resolve’ this conflict
by: 1) exciting the I3’s; and, 2) inhibiting their connection
to the VTF neurons (Figure 1-a). The timing between these
two actions is such that the LG’s inhibitory signal to the
VTF neurons (1.5ms) is faster than the I3’s excitatory signal
to the VTF neurons (2.4ms). The MG inhibits the I3’s in a
similar manner. Finally, the NonG circuitry recruits the I3’s
for voluntary movements that involve the VTF muscles.

Based on these facts, the I3’s neurons can be considered as a
basic behaviour controller, which can be recruited by ‘higher-
level’ controllers (i.e. LG, MG and NonG neurons) to generate
different behavioural patterns, via different configurations.

C. Adaptive integration of neural circuitry

Composite behaviours are produced by integrating several
neural circuitries, each one generating a simpler behaviour,
or movement. We study two cases here: one for producing



composed escape behaviours, and one for combining escape
and feeding behaviours.

In crayfish, escape from sudden backward threats involves
an immediate vigorous tail-flip, causing a forward leap, fol-
lowed by a sequence of rapid tail-flips, enabling swimming
[3]. The immediate reaction is mediated (or triggered) by the
LG neurons and swimming by NonG circuitry (Cf. subsection
II-B). Timing is essential here for achieving the desired
sequencing of these movements. Studies have found [3] that
the two types of neurons – LG and NonG – are triggered at
the same time, by the same (threat) stimuli, yet their reaction
times differ by at least an order of magnitude. Namely, the
muscles involved in the forward leap are activated first (i.e.
about 6ms after the threat stimulus, via LG) and the ones
involved in swimming (i.e. after about 50-500ms, via NonG).

Further behavioural composition can occur in crayfish from
already composite behaviours, like escaping and feeding.
These common behaviours are triggered by different types of
stimuli, like food availability and threats, respectively. Often,
these behaviours entail different usages of (the same or of
different) body parts, which are incompatible if triggered
simultaneously – e.g. different types of tail-flips, as discussed
in II-B; or, grasping heavy loads while swimming. Hence,
activating several such behaviours simultaneously, in response
to parallel stimuli, would lead to conflict.

The ability to choose among several behaviours that are
suitable within a given context is a major accomplishment
of the nervous system, for avoiding conflict. Often, alternative
behaviours inhibit one another, in a context-sensitive way. E.g.,
when crayfish feed on large pieces of food, either escape is
inhibited, or the food is released (feeding is inhibited) [1].

These observations suggested the existence of neural path-
ways that cross-connect the circuitry that mediates different
behaviours. Such coordination pathways could hence provide
a relatively direct way for behaviour selection and inhibi-
tion. Surprisingly, while these assumptions apply in certain
contexts, e.g., when one behaviour is significantly superior
to the others, in more complicated contexts, where several
behaviours may be simultaneously viable, more sophisticated
behaviours were observed [1]. Namely, if crayfish perceived
a threat during feeding on small pieces of food then usually
it carried these away – hence merging feeding and escape be-
haviours. Moreover, the probability of escape was higher than
when large food pieces were consumed. Hence, rather than
selecting and inhibiting alternative behaviours, the alternative
behaviours were recomposed from simpler motions, reacting
to most stimuli, and avoiding conflict – e.g. escaping while
holding onto food, but not consuming it.

These findings show that neural coordination of control
mechanisms, even in relatively primitive invertebrates, is more
sophisticated than the mere selection of pre-wired behaviours;
and can synthesise complex behaviours via context-dependent
adaptation and integration of simpler behaviours.

D. Control feedback via reafference

The reafference principle arose from the insight that many
reflexes were not simple input-output processes, but involved
continuous activity in neural circuitry [4]. This explained,
for instance, how fish maintained not only ‘normal’ postures
(e.g. horizontal), but also ‘abnormal’ postures (e.g. vertical
or sideways), both via reflex actions correcting deviations
from the ‘normal’ or ‘abnormal’ positions, respectively. This
suggests that reflexes react not only to external inputs but
also to internal inputs from higher-level neurons (i.e. affer-
ent signals). In short, higher efferent signals for voluntary
movement are transmitted as lower efferent signals to muscles;
afferent signals from the muscles are compared to the higher
efferent signals; and, the lower efferent signals to muscles
are updated accordingly, to minimise the difference between
higher afferent signals and the efferent signals (Figure 1-b).

The reafference mechanism is equivalent to negative feed-
back loops in ‘classic’ Control Theory: higher afferent signals
are equivalent to Reference control inputs, efferent signals
to monitored outputs from the controlled system, and lower
afferent signals to adjusted inputs into the controlled system.
It also resembles feedback loops in self-* systems, with higher
afference signals representing the goals of the self-* systems.

III. REUSABLE DESIGN FOR GOAL-ORIENTED
(SELF-)INTEGRATION OF ARTIFICIAL CONTROLLERS

A. Design Overview

Drawing inspiration from the neural control design concepts
discussed above (II) we propose a design approach for artifi-
cial controllers. This proposal fits within our previous work
on generic goal-oriented holonic architectures, e.g. [5] and
[6]. The contribution in this paper focuses on the specifics
of the controller self-integration process; and on the way
it handles conflict resolution between incompatible control
behaviours. Importantly, self-integration reuses pre-integrated
(sub-)controllers, when possible, for better efficiency.

In short, a controller receives input goals from stakeholders
(e.g. users, or other controllers) and produces corresponding
output actions on system resources for achieving the goals
(Figs. 2 and 3). It then monitors the results of its actions and
accordingly adapts its actions to better attain the goals. It also
provides goal evaluations to the stakeholder. We note that
actions can be viewed as lower-level goals, and monitoring
as lower-level evaluation. This view is consistent with the
generic architectures of Autonomic and Organic Computing,

Fig. 1. a) Ex. of adaptive neural configuration via excitement & inhibition;
b) Reafference principle in control theoretic terms, based on [4] and [18]



Fig. 2. Control Unit (CU) with Provided / Required Goals and Evaluations

with ‘classic’ control systems (i.e. goals as Reference inputs),
and with reafference (II-D) (i.e. goals as afferent signals).

We further decompose this generic controller into a set of
sub-controllers, recursively, until reaching elementary parts,
called Control Units (CUs) – e.g. software modules, services
or components – Fig. 2. CUs can be added, removed and
(self-)integrated at runtime, hence producing a wide variety
of Integrated Controllers (ICs). All CUs and ICs fit the
generic goal-oriented self-adaptive design described above.
Fig. 3 illustrates a basic IC, composed of two CUs: CUA

and CUB . A CU may implement basic control functions, such
as monitoring, decision-making or acting; entire feedback-
loops, such as self-optimisation; conflict-resolution algorithms;
learning, and so on – complete CU typology in future work.

Our aim here is two-fold. Firstly, we aim to enable CUs
to (self-)integrate, in various ways, to produce a large number
of IC variants, featuring composite control behaviours that
can respond to a wide range of runtime changes – in the
context, goals and resources. An optimisation problem here
is to strive for the best IC composition that can meet the
goals. Secondly, we aim to ensure the scalability of the self-
integration process – i.e. efficiency and viability for large
numbers of CUs and high frequencies of change. The problem
is to find a ‘satisficing’ controller, which meets the goals
without being necessarily optimal, within an ‘acceptable’ time.

To reach the first objective (self-integration) we extend
a ‘classic’ service-oriented component (SoC) approach [12].
Here, a CU is a service-component that provides and requires
goals (services) to/from other CUs. Dynamic service binding
connects CUs by matching their required and provided goals
(i.e. input and output types). However, unlike services, CUs
are autonomous entities that may accept or reject requests for

Fig. 3. Integrated Controller (IC) with two Control Units: CUA and CUB

providing their goals (e.g. to avoid conflicts with other goals
or prevent resource contention). A simple way to achieve this
is via a goal request/reply protocol over interconnected CUs.
CUs that accept goal requests form an IC. Moreover, unlike
SoC applications, ICs are evaluated with respect to their
ability to reach their goals. Unsuccessful ICs are dismantled,
re-triggering the self-integration process (details in III-B).

To reach the second objective (scalability) we organise the
self-integration process in a hierarchical manner. This allows
pre-integrated CUs (sub − ICs) to be reused, even if sub-
optimal; rather than re-integrating new ones from scratch.

We note the following similarities between the proposed
design and the observed design of studied nervous systems:
• Adaptive neural configuration, by output inhibiting (II-B):

adaptive CU configuration, by action blocking (III-B);
• Adaptive integration of hierarchical neural circuitry

(II-C): adaptive (self-)integration of hierarchical CUs
and/or sub− ICs into larger ICs (III-B);

• Neural reafference principle (II-D): goal-oriented con-
troller (self-)integration and system control (III-B).

We look into the design details of these processes next.

B. Goal-oriented Controller Integration and System Control

Integration involves several complementary operations: find,
interconnect, configure, execute and coordinate CUs; and,
detect and resolve conflicts. Each CU , sub − IC and IC is
evaluated with respect to its ability to reach its goals. In case of
negative evaluation CUs may be discarded (and replaced) and
(sub−)ICs may be dismantled and reintegrated dynamically
– partially or fully, involving (some of) the operations above.

Controller integration proceeds in a top-down manner, start-
ing from high-level stakeholder goals, progressively refin-
ing these into sub-goals, and finally into low-level actions
on system resources. For each (sub-)goal or action, a CU
or (sub−)IC that provides that goal/action must be found
and recruited. Once functional, each (sub−)IC is evaluated
(bottom-up) and only retained if successful. Hence, integration
may follow several top-down and bottom-up iterations (‘yoyo’
process, e.g. [13]) before finding a suitable IC (Cf. [5]).

In Fig. 3 for instance, (self-)integration starts when a
stakeholder requests goal G on CUA, which provides G. If
CUA accepts the request to provide G, then it must find a
provider for its requested goal G′. Hence, CUA finds CUB

and requests it to provide G′. CUB requires to perform actions
G′′ on resources Sys.Res.. When this connection is formed,
the integration process stops.

Once the resulting IC is operational, it is evaluated with
respect to the goals it accepted. Namely, CUB evaluates
how Sys.Res. provision G′′ – negative results prompt CUB

to select alternative providers for G′′. If G′′ is provided
correctly, CUB also evaluates its ability to achieve G′, and
may accordingly adjust its internal operation and/or its request
for G′′. Similarly, CUA evaluates CUB for G′, and may
accordingly choose another G′ provider, CU ′B , and/or adapt
G′. Finally, the stakeholder evaluates CUA for G, and may
choose another G provider, CU ′A, or update G.



Fig. 4. State Diagram of a Self-integrating Controller

Selecting an alternative goal provider, at any level, may trig-
ger another top-down integration process, with this provider at
the top. E.g., if CU ′B requires G′′′ then it must find a provider
for it, and so on. This top-down and bottom-up integration
process (‘yoyo’) should eventually stabilise (or oscillate over
relatively ‘large’ periods) – future work. For instance, the
evaluation frequency for higher-levels of an IC, e.g. at CUA,
should be lower than for lower-levels, e.g. Sys.Res. [14].

Based on these considerations, we distinguish two main
interrelated phases, or states, in the control process (Fig. 4):
1) controller (self-)integration; and 2) system control. Phase
(1) represents a meta controller (or meta feedback loop), for
integrating a controller that can reach its goals. In phase
(2), this IC controls the underlying system, and is evaluated
accordingly. If evaluation is positive, the IC maintains its
composition. If negative, phase (1) is performed again (i.e.
controller reintegration). Of course, before being evaluated
negatively, each CU may also attempt to self-adapt internally
(e.g. self-optimisation or configuration) – not shown. If a new
IC cannot be found, the integration process halts and waits
for a change (e.g. if CUs are missing, wait for new CUs).

In principle, a controller may start in any of the two sates. In
practice, it should start in state (2), i.e. pre-integrated controller
(developed offline), and self-adapt its composition during its
life-cycle. Also, different (sub−)ICs may be in different
states, simultaneously – e.g. different ICs pursuing different
goals. Important questions must be addressed in future work
on the coordination between these two processes.

C. Key Characteristics

Importantly, the proposed (self-)integration process imposes
neither direct CU communication, nor linear goal decompo-
sition (even if this is the case in the current prototype –IV). It
merely implies causality between required and provided goals:
for a CU ’s provided goals to be fulfilled, its required goals
must also be fulfilled, hence provided by other CUs. This
allows for higher-level provided goals to ‘emerge’ from lower-
level required/provided goals, meaning, that the exact causality
between them is difficult, or impossible, to define analytically.

Controller self-integration is completely decentralised – dis-
tributed across special-purpose functions implemented within
CUs (Cf. IV). The top-down and bottom-up (yoyo) iterations
represent a basic decentralised learning process, based on trial-
and-error searching for a viable ICs – i.e. a CU combina-
tion that reaches the goals. Future work may include more

sophisticated learning and self-optimisation processes (slower,
more ‘thoughtful’), running in parallel with these basic self-
integration processes (faster, more reactive). Once learned,
optimised controllers may be (self-)integrated much faster.

The proposed two-phase controller design is in-line with
Ross Ashby’s view on ultrastable systems [11], which also
feature two types of feedback loops. The first one operates fre-
quently and makes small adjustments for keeping the system
within its viability space – the equivalent of an operational
IC (Phase-2) in our case. The second feedback operates
infrequently, only when the system approaches its viability
limits, and performs more dramatic changes, or system restruc-
turing – the equivalent of controller re-integration (Phase-1).
Ashby also considers trial-and-error as a “necessary” means
of adaptation in unknown environments, not at least because
of its key role in gathering essential information (i.e. learning).

The proposed design achieves reusability not only by
reusing CUs in various assemblies, but chiefly by reusing
pre-integrated controllers (sub-ICs) as parts of larger ICs. For
instance, supposing that the stakeholder in Fig. 3 requires a
new goal GNew that can be provided by a control unit CUNew,
which in turn requires G. CUNew can request G from CUA,
and, if successful, the integration process stops – because CUA

is the top of an existing IC, including CUB and Sys.Res.
This is essential for ensuring scalability, by reducing the

number of cases where controller integration must be per-
formed, from scratch. The more generic the functionality of
sub-ICs, the higher their reusability in producing new IC
variants. Scalability can be further enhanced by limiting the
scope of the trial-and-error integration, at different levels, via
hierarchically encapsulated structures (holonic design) [14].

IV. PROOF-OF-CONCEPT DESIGN AND IMPLEMENTATION

We developed a proof-of-concept prototype focused on the
dynamic integration of controllers for a smart-home system.
The objective was to illustrate the feasibility of the proposed
design via a concrete example. Concretely, we aimed to show
how various CUs, deployed at runtime, can be integrated
dynamically for adapting the house’s control behaviour to
changes in stakeholder goals and smart devices; and how
existing ICs can be partially reused to form new IC variants.

The prototype is based on a service-oriented component
technology – iPOJO1, based on OSGi2, in turn based on Java.
It supports CU hot-deployment (i.e. addition, update, removal
of OSGi bundles) onto the smart home platform – iCASA3

simulator (also based on iPOJO). The actual specification
formalisms and acquisition mechanisms for CUs were out of
this prototype’s scope (future work).

Each CU was implemented as an iPOJO service-oriented
component. It provides and requires services (Java inter-
faces) that represent provided and required goals, respectively.
The integration protocol between goal-requesting and goal-
providing CUs consists of a Goal Request followed by a

1https://felix.apache.org/documentation/subprojects/apache-felix-ipojo.html
2OSGi Alliance: https://www.osgi.org
3iCASA: https://adeleresearchgroup.github.io/iCasa



Goal Reply message. Each provided goal (service interface)
implements a Goal interface, which defines a requestGoal(<
parameters >) method. Parameters include the goal’s values
and scope [6], [5]. The goal’s values V represent its viability
domain. Its scope includes a resource scope SR and a time
scope ST , meaning, where and when to achieve the goal,
respectively. E.g., a requestGoal on a Temperature−Goal
specifies parameters V = 19−22◦C (what), SR = “kitchen′′

(where) and ST = “7− 10pm′′ (when).
Stakeholders can request a goal’s activation by calling the

requestGoal method on the desired goal interface, provided
(implemented) by a CU component. The method’s response
indicates whether or not the goal request was accepted (i.e.
currently boolean, yet more advanced versions may offer
explanations, suggestions, or alternatives). Once accepted,
the activated goal must resolve its required goals (III-B). It
connects to CUs providing these goals (i.e. dynamic service
binding provided by iPOJO) and calls requestGoal for these
CUs’ goals. This results in a recursive chain of requestGoal
calls and responses, which, when all requests have been
accepted, leads to a fully-integrated and functional controller.

Within the scope of this prototype, we assumed that inte-
grated CUs are always connected via explicit service bindings
(i.e. one CU has a reference to the other one, and uses it to
communicate). This needs not always be the case (e.g. indirect
communication via the environment - ‘stigmergy’). We also
assumed that CUs aim to cooperate, when possible. More
complicated CU relations – e.g. competition, parasitism or
indirect stigmergic influence – will be subject to future work.

We designed three types of CU components:
• Goal Manager (GM): collects goal requests, resolves con-

flicts among incompatible goal requests, and dispatches
coherent goals to Goal Pursuers;

• Goal Pursuer (GP): controls resources – e.g. monitors,
decides and acts – to achieve active goals;

• Resource Adapter (RA): connects CUs to heterogeneous
system resources (e.g. device drivers).

These types represent logical components and can be im-
plemented in various ways. For instance, the GM can be a
stand-alone component (as in our current implementation),
or embedded within the membrane that encapsulates GP
components (e.g. iPOJO membrane handlers – we assume this
to simplify Figs. 5 and 6). Moreover, logical control functions
of GMs and/or GPs can be implemented via various design
patterns (centralised, decentralised or hierarchical) [15]. Based
on this typology, ICs are assemblies of GPs, connected to
home devices via RAs. GPs and RAs that receive conflicting
goal requests are encapsulated within GM membranes.

V. SMART HOME CASE STUDY AND RESULTS

A. Simulation settings

We tested our controller prototype for managing a smart
home – simulated via iCASA (Fig. 6-a). iCASA offers several
types of smart devices – e.g. heaters, thermometers, presence
sensors, and lamps – which we extended with windows and

Fig. 5. Components types: Goal Manager (GM – encapsulates control units
to resolve goal conflicts), Goal Pursuer (GP – pursues active goals), Resource
Adapter (RA – connects controllers to system resources)

blinds. Devices are equipped with sensors and actuators, via
which our CUs could manage the smart home.

We defined the following types of goals: temperature (GT ),
energy consumption (GE), security (GS) and luminosity (GL).
We implemented various CUs (GMs, GPs and RAs) for
integrating controllers able to attain these goals (Fig. 6-b,c,d).
Goal types were hot-deployed onto the iCASA simulator
progressively, without restarting. For each new goal, the home
IC recruited and self-integrated additional CUs, and resolved
conflicts with CUs pursuing other goals. Some goals were
later removed and/or updated and the IC adapted accordingly.
We present a simplified version of these experiments next.

B. Experimental Control Behaviour

Figs 6-b,c,d illustrate the incremental extension of the smart
home’s IC for handling new user goals. In the first scenario
(Fig. 6-b), iCASA platform is started and the user requests a
Temperature Goal: GT = ([19− 22◦C], kitchen, 7− 10pm).
The request is made on a top-level Goal Manager (GMIC),
which provides all goals supported by the smart home (GT ,
GE , GS). GMIC is not shown for simplicity, but we consider
it embedded in IC1’s membrane. Once it accepts GT , GMIC

finds a CU that can provide GT : goal pursuer GPT . Once
GPT accepts the request for GT , it searches for i) CUs that
provide temperature monitoring GMT : e.g., a thermometer
driver RAT ; and ii) CUs that can act on devices that change
the temperature: e.g., heater and window adapters, RAH and
RAW , respectively. To comply with GT ’s scope, these CUs
must be in the kitchen. GPT also monitors the outside
temperature. Since the external temperature is higher than the
targeted temperature, GPT asks RAW to open the window; it
also asks RAH to switch on the heater. GT is thus achieved.

In the second scenario (Fig. 6-c), the user further requests
a security goal GS for the entire house, which includes the
kitchen. The integration process proceeds as before: GMIC

recruits GPS , which in turn recruits all adapters to devices
impacting security – e.g. the window adapter RAW . When
a room is empty, GPS asks all adapters to secure devices
and avoid intrusion. For RAW , this translates into closing
the window. This causes a conflict with the temperature
controller GPT , which had requested the window open. The
goal manager of the window adapter (GMW ) – not shown,
in RAW ’s membrane – resolves the conflict by denying the
request from GPT and closing the window (e.g. because GS



Fig. 6. iCASA smart home simulator (a), with Integrated Controller for Temperature (b), plus Security (c), plus Electricity (d) Goals

has priority over GT ). Hence, GPT only achieves GT via the
heater device. Both GT and GS are attained in this way.

In the third scenario (Fig. 6-d), the user further requests
to minimise electricity consumption GE . As before, GMIC

recruits a goal pursuer GPE , which binds to all adapters of
devices that consume energy – e.g. the heater adapter RAH .
During peak hours, GPE asks device adapters to switch-off
electric devices. This causes another conflict with GPT , which
requested the heater switched-on. Because GE has priority
over GT , the goal manager of the heater adapter (GMH ) –
not shown – ignores the requests from GPT . Hence, GPT can
no longer attain GT , because its requests to both the window
and the heater are turned-down.

Next, the user installs new blinds on the kitchen window,
and updates the window adapter (RA′W ) to access its controls.
RA′W can map requests to open the window into several
actions: i) open window and blinds; ii) open window and
close blinds; and iii) open window, close blinds and tilt
them horizontally. RAW can also map requests to secure the
window into the actions ii) and iii) above. Hence, both requests
from GPS and GPT can now be accepted. Namely, to reach
GS , the window can be open if the blinds are down and tilted;
this helps meet GT since heat from outside can pass through
the open window and blinds. Thus, all goals are attained.

C. Discussion

These experimental scenarios showed how ICs could be
integrated dynamically from CUs. This enabled ICs to be
extended and updated in response to new goal requests and
device deployments. CUs were added to the running smart
home platform manually; future versions may fetch CUs
from special-purpose repositories instead. CU descriptions
and implementations were defined and configured specifically
for the targeted application. More flexibility and reusability
can be achieved in the future by identifying domain-specific
control functions and implementing them as reusable CUs.

Most importantly, we showed how conflicts could arise
dynamically between ICs with incompatible goals. These
conflicts were resolved by merging the behaviours of the con-
flicting ICs, rather than by blocking one of them completely.
Namely, in the second scenario, the temperature controller
GPT (with lower priority) was not completely deactivated,

only its access to the window adapter was blocked. This
allowed it to continue functioning and hence to achieve its
goal GT via the heater. In the third scenario, GPT was
again granted access to the window, despite the apparent
conflict with the security goal GS , since the window could
be configured to open securely. This approach is similar to
the adaptive behavioural merging discussed in subsections II-B
and II-C, where partial neural inhibitions enabled the synthesis
of new behaviours via reuse of existing neural circuitry.

VI. RELATED WORK

Many research areas are relevant to the proposed approach.
We focus here on those relevant to system (self-)integration.

We have already indicated (above) the relevance of service-
and component-oriented models (e.g. iPOJO/OSGi, but also
CCM, EJB, .NET, Fractal, Web Services) and the key exten-
sions of our proposal. We also discussed the compatibility of
our proposal with controller designs in nervous systems (e.g.
crayfish) and cybernetics (e.g. Ashby’s ultrastable system).
Self-integration also resembles self-expression, as in [9], en-
abling self-adaptive systems to change their collaboration pat-
tern dynamically for dealing with significant context changes.

In the area of self-assembling systems, [7] aim to enable
software systems to learn to optimise their composition from
alternative building blocks, to maximise performance within
each context. The additional complexity in our case is that
building blocks are themselves self-* controllers, hence intro-
ducing new sources of dynamism to the self-assembly process.

The general area of systems-of-systems [10] is also similar
to our objectives. As above, in addition to integrating ‘classic’
software systems, we aim to (self-)integrate self-* systems.

Recent works aim to tackle conflicts in self-* systems, e.g.
[17], [8]. [17] propose an offline service orchestrator that
prevents conflicts during service composition. [8] allow con-
flicting services to be deployed, and enable service developers
to program conflict prevention at the service level, based on
locking mechanisms offered by the underlying platform.We
also aim to handle conflicts that have not been predicted and
resolved during the development phase; by detecting them
and integrating conflict-related CUs dynamically. In previous
work we defined conflicts from a goal-oriented perspective



[16] and proposed specific design patterns for distributing the
conflict resolution logic throughout system components [15].

VII. CONCLUSIONS AND FUTURE WORK

This paper focused on two key design features of auto-
nomic controllers – namely, modularity and dynamic (self-
)integration – as key enablers for viable self-* systems,
evolving in complex unpredictable environments. The key
benefits of these design features include efficiency, scalability
and survivability, through reusability (both at elementary and
composite levels) and dynamic restructuration (both pre-wired
and via trial-and-error learning).

First, the paper brought to the fore three generic con-
troller design features that had been studied in organisms
with relatively primitive nervous systems (i.e. crayfish): i)
neural configuration: reusing neurons with different output
configurations to synthesise various behaviours for different
situations; ii) behavioural integration: merging pre-wired neu-
ral circuitries and inhibiting conflicting overlaps to produce
composite behaviours in complex situations; iii) reafference:
using lower-level feedback loops to implement higher-level
afferent (control input) signals. Based on a hierarchical organ-
isation of neural circuitry, these features provide an efficient
adaptable way of producing a wide variety of behaviours based
on a limited amount of resources (sensor, motor and cognitive).

Second, the paper showed how these principles can be
adopted for designing complex controllers in artificial self-*
systems. Within the broader context of a generic control archi-
tecture developed in previous work [14], [5], we focused here
on the design features enabling the dynamic (self-)integration
of software controllers. We showed how a relatively simple
protocol, based on goal requests and replies, could recursively
self-integrate controllers from reusable control units (CUs),
for responding to unexpected changes (e.g. new goals and
devices). This notably included cases where the dynamic
integration of pre-integrated controllers (ICs) led to conflicts;
and how these could be resolved by integrating special-purpose
CUs (i.e. conflict-resolution functions). We also showed how
ICs, once operational, could be evaluated, and potentially
dismantled and reintegrated if they failed to meet their goals.

The resulting (self-)integration/evaluation process follows
a top-down and/or bottom-up iterative path, which converges
when finding an IC that can ‘satisfice’ the goals; or when the
search space is depleted. Importantly, this approach does not
assume linearity or reducibility (e.g. via an analytical model)
of the behaviour of ICs to the functions of their CUs and
to their interconnections. It merely enables a (self-)integration
process able to search the combinatorial space of CUs for a
suitable composition, in the given context. Scalability is a key
issue here – we have started to address this in previous work by
identifying special-purpose design principles for complexity
management in large-scale self-* systems [14], [5].

The proposed design draws inspiration from its natural
counterpart by adopting the hierarchical organisation and the
associated mechanisms for dynamic reconfiguration, both of
individual elements (neurons or CUs) and of pre-integrated

elements (neural circuitry or ICs). We argued that this can
provide the same advantages to artificial controllers: reusabil-
ity, efficiency and adaptability to a broad range of changes.

This preliminary work opens several directions for future
work – e.g. alternative goal and protocol specifications; CU
typology; convergence, stability and scalability of parallel self-
integration processes. More experiments are also required to
address more complicated scenarios, such as cases where
goal requests are denied and several integration iterations are
required before convergence.

On the longer term, we envisage adopting more advanced
learning functions for self-optimising the self-integration pro-
cesses in new scenarios and for speeding-up these processes
when similar scenarios reoccur. Overall, the presented work
aims to contribute towards providing a reusable design model,
framework and platform for facilitating the development and
maintenance of complex controllers for self-* systems.
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