
Multi-Level Online Learning and Reasoning for
Self-Integrating Systems

Marius Pol
Independent researcher

Paris, France
mariuspol@messagebox.email

Ada Diaconescu
LCTI Lab, Télécom Paris, IP Paris,

Palaiseau, France
ada.diaconescu@telecom-paris.fr

Abstract—Self-improving and self-integrating systems (SISSY)
often employ runtime models to represent their state and en-
vironment, and reason upon them to determine the required
adaptation logic for reaching their goals. However, most model-
based approaches rely on static modeling languages and can-
not handle runtime uncertainty (e.g. dynamically integrated
resources) that requires online language extensions. In previous
work, we proposed an approach to extend the system’s modeling
language with new monitoring and action dimensions. However,
the solution generates a high number of new language elements,
slowing down the reasoning process for large systems. In this
position paper, we propose a multi-level approach for extending
the modeling language at runtime, and aim to provide online
learning and reasoning at multiple levels of abstraction. Increasing
the modeling abstraction decreases the number of concepts
to reason about, hence improving scalability. We provide a
preliminary validation of this proposal by detecting novel abstract
dimensions from monitoring data from the smart home domain.

Index Terms—self-integration, model-based adaptation, multi-
level, online learning, on the fly reasoning, knowledge abstraction

I. INTRODUCTION

Self-adaptive systems often use runtime models of them-
selves and their environment to compute adaptation actions
for meeting their goals when changes occur [1]. Such runtime
models are synchronized with the managed system – i.e. via
causal relations, both imposing and reflecting system changes
dynamically [2]. However, traditionally, the modeling lan-
guage (i.e. meta-model [3]) on which models are based upon
is defined statically and offline. This limits system adaptations
to those that can be defined via the predefined language.

Self-improving and self-integrating (SISSY) systems are
open self-adaptive systems that must deal with unpredictable
situations [4] (e.g. integrating new types of resources or sys-
tems at runtime). Hence, they require a dynamic and flexible
language vocabulary to represent and reason about themselves,
when undefined changes occur. In previous work [5], we
proposed to learn new language elements, or ‘concepts’, at
runtime, so as to extend the system’s modeling language –
and hence be able to represent and reason about unexpected
situations. The proposed cognitive control system consisted
of: a deliberative layer – for acquiring new knowledge in
unexpected cases; and, a reactive layer – for managing the
system in known cases (Figure 1). However, as the number

Deliberative System

Reactive System

Knowledge Base

Goals

Observations Actions

Managed System

Cognitive Control System

Context

Argumentation Module

Play Module

Fig. 1. Architectural Overview of the Cognitive Control System: the delib-
erative system provides reflective capabilities to deal with new situations; the
reactive system handles change management in known situations.

of modeled concepts increases, determining adaptation solu-
tions requires more-and-more computational resources, hence
limiting the scalability of this initial approach.

To support modeling language extensions for large systems,
we propose a solution based on multi-level online learning
and reasoning (i.e. an end-to-end self-aware solution [6]). As
in our initial solution, we replace traditional logical models,
based on a fixed language, with geometric representations of
monitoring data, that allow learning the underlying language
online and computing the adaptation logic on the fly. We
extend this approach to multi-dimensional representations, as
a basis for conceptual abstraction. The learning process uses
novelty-detection [7] to identify clusters in the monitoring
data representations (Figure 2); and defines new language
elements, i.e. ‘concepts’, based on these clusters. Multidimen-
sional clusters represent abstract concepts; and unidimensional
ones basic concepts. A knowledge abstraction method extends
the modeling language with new vector-based representations,
generated at runtime. Hence, the concepts of the modeling
language are learned at increasingly higher abstraction levels.
This decreases the number of concepts to reason about, hence
improving system scalability. Reasoning determines adaptation



actions via on the fly computations on the learned concepts.
The paper’s contributions are: a) online learning of multi-

level concepts; b) proactive learning of correlations between
actions and their effects; c) on the fly reasoning for reactive
adaptations. We illustrate our proposal via examples from the
smart home domain (sec. IV); and provide preliminary valida-
tion by generating abstract concepts based on the monitoring
data obtained from a smart home dataset [8]1.

We present an overview of our approach and its theoretical
background in (II). Then we focus on related work (III) and an
illustration of our contributions within a smart home scenario
(IV). We detail the knowledge abstraction process in (V)
and the learning and reasoning processes in (VI). We present
preliminary results in (VII) before concluding in (VIII).

II. SOLUTION OVERVIEW & BACKGROUND

A. Architectural Overview

This proposal extends our previous approach – i.e., a
cognitive control system composed of a deliberative system
and a reactive system, sharing a knowledge base (Figure
1). When the knowledge base already contains adaptation
plans for a detected problem, the reactive system uses it to
perform model-based adaptation. When the required adap-
tation knowledge is missing, the reactive system activates
the deliberative system, whose argumentation module reasons
upon the existing knowledge to compute new adaptation plans.
When even the knowledge that supports reasoning is missing,
the deliberative system activates the play module to learn it.
Learning is therefore part of the reasoning process, to complete
the existing model when adaptation knowledge is missing.

B. Online Modeling within Conceptual Spaces

The proposed learning process involves knowledge rep-
resented in conceptual spaces [9] – a cognitive knowledge
representation framework where data is represented as vectors
in geometrical spaces built on monitoring dimensions. These
vectors denote the centroids of concepts, i.e. convex regions
regrouping similar observations (Figure 2). Conceptual spaces
are built on domains, which are composed of one or several
dimensions. In the resulting geometric space, a distance mea-
sure may be defined, providing a similarity measure between
observations. To select the relevant dimensions for represen-
tation, the conceptual spaces theory proposes weights, which
intervene in the distance computation. The theory therefore
offers context-dependent, partial representations.

In our proposal, every goal pursued has an associated
conceptual space. Similar observations cluster into convex
regions denoting concepts. At anyone time, the centroids of
these regions depend on the data composing the concept, pro-
viding dynamic representations suitable for runtime operation.
Low-level concepts are represented on domains containing
single dimensions. We propose to increase the abstraction
level of these representations by automatically determining
domains with multiple dimensions. The knowledge abstraction

1https://data.mendeley.com/datasets/fcj2hmz5kb/3, last access August 2021

S10
Sn0

S20

S11

S21

Sn1A

C0
C1

Fig. 2. Conceptual Spaces Representation: Black dots represent monitoring
data. Gray vectors point to the middle of data clusters and represent concepts.
Action A is represented as a category of changes from concept C0 to C1.
Action A is determined via a contrast operation between concepts C1 and C0.

method is based on mCANDIES – an online novelty detection
method for SISSY systems [7]. Novelty detection determines
clusters denoting concepts not yet modeled, and supports
the generation of new concepts as weighted means of these
clusters. Clusters contain concepts on multiple dimensions,
therefore providing abstract representations (e.g. in a smart
home system, an abstract cost goal composed of power and
gas consumption).

C. Modeling Language based on Predicates

The approach generates a logic-based modeling language,
whose syntax is a set of logic symbols L. A semantic mapping
M provides meaning for syntax elements by relating logic
symbols with conceptual representations, i.e. M : L → C.
The play module adds conceptual representations to C, and
then, via a labeling function, generates symbols for these con-
cepts, symbols which extend L. The correspondence between
symbols and concepts is included in M. The actual symbols
presented here are associated manually, for readability; pro-
viding them autonomously is out of the paper’s scope.

To represent concepts generated by the play module on
the symbolic level of representation, and enable computations
in the deliberative system, we define logical predicates. A
predicate is a function, denoted by a symbol, defined for
variables monitored in the managed system, mapping onto
binary values true or false. We associate predicates to concepts
generated in our approach, predicates considered true when
observations fall into the convex regions denoting these con-
cepts (e.g predicate ShowerWaterOn for observations falling
into the region denoted by the vector SShowerWaterOn in Figure
3). In our approach, the conceptual level of representation is
vector-based, while the symbolic one relies on predicates.

D. Online Reasoning

To reason for finding the adaptation logic when goals are
no longer met, the possible actions and their effects also
need to be modeled. The concepts introduced above represent
system states. Adaptation actions are represented as categories
of changes in conceptual spaces [10]. Figure 2 shows the
representation of an action A, as a category of changes from
a concept C0 to a concept C1. Data monitored on the domain
of C0 clusters to form the convex region denoting this concept
(points S10, ..., Sn0). Similarly, the concept C1 regroups
observations S11, ..., Sn1. The action A represents a category

https://data.mendeley.com/datasets/fcj2hmz5kb/3


of changes from points represented by C0 to points represented
by C1.

To generate the required symbolic knowledge based on the
conceptual representations created by knowledge abstraction,
we rely on a contrast operation in conceptual spaces [11].
This is a difference operation between concepts, and outputs
a vector containing relevant dimensions that differentiate the
input concepts (Figure 2). As the contrast operation is a vector,
it has an associated concept, and hence a predicate. To model
the actions and their effects, the contrast operation determines
the logical symbols that represent relevant differences between
concepts. As the system gains in experience, the generated
knowledge becomes more abstract, therefore involving less
computations for determining the adaptation knowledge.

The proposed reasoning capabilities extend both compo-
nents of the previous cognitive control system: on the fly
reasoning for the reactive system for fast reactions, and
deliberative reasoning for computing adaptation logic based
on existing knowledge. The deliberative reasoning capabilities
support the three main reasoning processes observed in hu-
mans: deduction, induction, and abduction. Deductive reason-
ing occurs when determining the effects of actions. Inductive
reasoning is accomplished in our case via the knowledge
abstraction method. Here, induction may be considered as
learning from clusters of observations, but also as learning
from prior knowledge (e.g. refining a concept representing a
cost goal by progressively adding more dimensions as they
become relevant at runtime). Abductive reasoning determines
the adaptation knowledge required to solve the targeted goals.

III. RELATED WORK

Multi-layered control systems (e.g. three-layer reference
model [12], Observer/Controller model [13]) propose a reflec-
tive layer for managing adaptation plans when required by
changes in the environment. Our proposal builds on previous
work implementing a reflective layer, a deliberative system
with learning and reasoning capabilities at a low level of
abstraction, offered by available sensors and actuators [5].
Self-awareness is an ongoing research challenge in the related
fields of autonomic computing [14] and organic computing
[15]. Multiple types of knowledge representation are available
for managing adaptation knowledge [16]: model-based, goal-
based, and utility-based. Our proposal is a learning system that
generates adaptation knowledge autonomously.

Reinforcement learning may bridge the semantic gap be-
tween high-level goals and low-level actions. To cope with
large-scale SISSY systems, learning is based on hybrid ap-
proaches (e.g. [17], [13]), which include design-time models
updated at runtime to support adaptation in dynamic envi-
ronments. While hybrid methods are based on knowledge
represented on the symbolic level, we propose that systems
build their own conceptual representations, and determine the
symbolic representations at runtime. Moreover, due to the
partial nature of the generated models, the proposed learning
process focuses on knowledge relevant to the goals pursued.
Learning classifier systems [18] also represent the knowledge

other cost
components

power
consumption GHighCost

ERaiseCost

ERaisePower

GLowPower
GLowCost

SHotWaterOn

ATurnShowerWaterOn

ATurnHotWaterOn

ATurnColdWaterOn

SColdWaterOn
SShowerWaterOn

SColdWaterOff
SHotWaterOff

GHighPower

cold water
consumption

hot water
consumption

Fig. 3. Knowledge Abstraction Method. The power consumption component
ERaisePower may be solved with the abstract action ATurnShowerWaterOn, composed
of ATurnColdWaterOn and ATurnHotWaterOn. Black solid arrows designate abstract
knowledge, while the empty arrow represents a learned correlation. G and S
represent goals and current states. A and E represent actions and their effects.

geometrically, however the learning process focuses on one
specific goal. Our approach also considers the priority of other
goals pursued in determining solutions. While existing ap-
proaches are reactive, i.e. learning as new situations are expe-
rienced at runtime, our proposal takes a proactive approach for
knowledge generation [19]. Namely, the play module generates
knowledge proactively, during inactivity periods, to extend
the existing modeling language with abstract representations.
Modeling causal relations dynamically is essential for self-
adaptive systems operating in uncertain environments [20].
Our current proposal only detects correlations, via novelty
detection. Hence, future work will explore existing proposals
[21] to determine actual causality.

The reasoning methods for runtime adaptation depend on
the type of knowledge representation (e.g. model-based [22],
goal-based [23], utility-based [24]). Our approach supports
reasoning on all these representations. Based on the method
to solve the semantic distance between high- and low-level
representations, reasoning approaches for runtime adaptation
may be top-down, bottom-up or hybrid [16]. Our approach is
hybrid, with a bottom-up process for increasing the level of
representation of conceptual knowledge, and a top-down rea-
soning process that focuses the learning process on knowledge
relevant to the goals pursued.

IV. CONTRIBUTIONS OVERVIEW IN A SMART HOME
SCENARIO

In this section, we highlight our main contributions applied
to a smart home scenario. The scenario focuses on a partial
problem, relevant to our approach, where a smart home man-
ager aims to lower power consumption as a way of achieving
a cost goal. The power-consuming resources are not yet
modeled. The scenario starts when the managed system needs
to be adapted, as the goal pursued is GLowCost, and the current
state is GHighCost (Figure 3). To solve a goal, the deliberative
system’s reasoning aims to undo the actions that lead to
the current unwanted state [5]. The effect ERaiseCost may be
decomposed into a power consumption component, ERaisePower,
and other cost components, which we ignore here. We suppose
the knowledge base contains no adaptation plans for solving
the partial goal GHighPower. Therefore, the deliberative system
activates the play module to learn the missing knowledge.



A. Multi-Level Online Learning

To avoid a fixed modeling language, the play module
represents the learned knowledge in conceptual spaces [9],
via vector-based representations. For multi-level learning, the
play module relies on the online novelty-detection capabilities
in mCANDIES [7], to determine data clusters and create
abstract concepts. In conceptual spaces, concepts represent
system states, and actions represent categories of changes from
one concept to another (see II-D and Figure 2). For example,
action AColdWaterOn represents changes from SColdWaterOff to
SColdWaterOn. The play module detects the clusters for concepts
that represent system states before and after a goal’s resolution,
then generates the action representing this change. In our ex-
ample, the play module analyses historical monitoring data and
determines the clusters of concepts that solved GHighPower in the
past: the cluster composed of SColdWaterOff and SHotWaterOff in the
initial state, and SColdWaterOn and SHotWaterOn in the final state.
The play module generates the abstract concepts SShowerWaterOff

and SShowerWaterOn as weighted means of the clusters resulting
from novelty detection. The generated concepts are added to
the semantic domain of the modeling language C, while the
associated predicates extend the syntax L. The play module
takes a self-improving approach for learning, analyzing recent
data to rapidly determine possible solutions, then considers
older data looking for optimal solutions.

The abstract action ATurnShowerWaterOn is generated by the
contrast operation, as the difference between SShowerWaterOn and
SShowerWaterOff. The meaning of the abstract action is observ-
able in the figure, where the hot water component is more
important than the cold water one. With the generated action
ATurnShowerWaterOn, the plan solving GRaisePower contains a single
computation step, which increases the efficiency of the delib-
erative system when recomputing adaptation logic in this part
of the state space, compared to a plan composed two low-level
actions (i.e. ATurnColdWaterOn and ATurnHotWaterOn). Therefore, the
play module enables multi-level online learning for concepts
(i.e. SShowerWaterOn), as well as learning correlations (i.e. plan
containing ATurnShowerWaterOn to solve GRaisePower).

B. Reactive and Deliberative Reasoning

Based on the concepts generated in the learning pro-
cess, the cognitive control system may reason on the fly to
determine adaptation plans via the contrast operation [11].
Along with raising the power consumption, another effect of
ATurnShowerWaterOn is that the gas consumption also increases,
as showering is accompanied by heating the bathroom. The
play module generates the concept GHighGas, and stores the
correlation between it and ATurnShowerWaterOn for future use (not
pictured in Figure 3). Hence, in future reasoning processes
for goals that involve GHighGas, the reactive system generates
the required adaptation logic on the fly, via a rapid reaction,
without having to activate the play module to generate it.
During inactivity periods, the deliberative system searches for
more computationally effective adaptation plans, exploiting the
abstract concepts learned as above. We will provide examples
for the three deliberative reasoning processes in VII.

V. CONCEPTUAL KNOWLEDGE ABSTRACTION

In our proposal, abstract concepts are generated as weighted
means of more basic concepts, represented on single dimen-
sions. Clustering is performed only on dimensions relevant
to a goal, associated to the same conceptual space, hence
resulting in partial representations. The centroid of a convex
region denoting a concept may be interpreted as a vector
starting at the origin of the geometrical space. An abstract
concept is computed as the sum of vectors denoting lower
level concepts, and may therefore be viewed as a weighted
mean of its components. The components to be considered
for the knowledge abstraction process are determined on the
dimensions where the most important changes between final
and initial states are noticed.

Actions and effects are represented as changes on a single
domain [25], which may contain multiple dimensions. The
knowledge abstraction process extends the existing domains
with new dimensions. The system learns to perform changes
on additional dimensions, increasing the power of changes
possible in the managed system with a single computation.

The proposed method does not aim to generate perfect
abstract concepts immediately, and takes a self-improving
approach to learning [26]. Concepts are created when the
play module detects clusters in monitoring data, from a single
observation. These concepts may be subjected to biases of ex-
perience and goals. Concepts that prove useful for computing
the adaptation knowledge are stored and strengthened, while
other concepts may be left out of the knowledge base. Hence,
the modeling language refines as the reflective layer gains
more experience, and is anchored in lower-level concepts,
which evolve as their composing data evolves.

VI. ONLINE LEARNING AND ON THE FLY REASONING

In this section, we focus on the symbolic level of knowledge
representation and present the proposed learning and reasoning
capabilities for SISSY systems.

A. Learning Abstract Concepts

Abstract concepts may be expressed in terms of their
composing lower-level concepts, by projecting them onto
their composing dimensions. Therefore, abstract conceptual
representations maintain a connection to the underlying lower-
level concepts. For example, the concept SShowerWaterOn may be
expressed as a weighted mean of SColdWaterOn and SHotWaterOn.
When this knowledge is required for adaptation, the play
module has access to this relation, as it is included in the
conceptual knowledge representation.

Even though the play module stores all modeled concepts,
these may not be included in the solution that started the
original reasoning process in the deliberative system. Indeed,
generated solutions may not be acceptable, e.g., as enacting
them may generate conflicts with more important goals. There-
fore, in the process of solving a single goal, multiple concepts
may be modeled by the play module.



B. Reasoning via Concept Contrasting

The cognitive control system performs deliberative reason-
ing when adaptation logic is present in the knowledge base.
The argumentation module in the deliberative system performs
reasoning on the symbolic level of representation. This paper
focuses on extending the modeling language at multiple levels
of abstraction for reactive reasoning capabilities; more details
about the deliberative system are presented in [5].

Goals are solved on the conceptual level of representation,
by decomposing the effects required to achieve them from the
current state. The deliberative system computes the effect re-
quired for adaptation with the contrast operation, as the vector
from the current state to the goal state (e.g. ERaiseCost in Figure
3). It then decomposes the result, and determines possible
solutions based on the available knowledge. When only low-
level knowledge is available, the goal decomposition contains
detailed low-level effects, which require many computations.
As the knowledge abstraction process generates more abstract
representations, returned solutions involve less reasoning. The
decomposition that requires minimum computation to solve a
goal is determined as the shortest path in a directed acyclic
graph generated for the effects which have solutions in the
knowledge base. The actions solving the initial goal represent
the output of the reasoning process.

An example of this operation in shown in Figure 3. During
the reasoning process (e.g. while adapting to GHighCost), the
contrast operation computes the required effect as the differ-
ence between the goal pursued on the power consumption
dimension, GHighPower, and the current state, GLowPower. The
resulting difference is represented as the effect ERaisePower ∈ C,
and RaisePower ∈ L. The play module is activated to learn
the adaptation knowledge required to obtain this effect (as in
IV-A), and extends the modeling language with the results, i.e.
the semantic domain becomes C∪{CShowerWaterOn}, and the gen-
erated predicate is added to the syntax L∪{ShowerWaterOn}.

As goal representations are available at both symbolic and
conceptual levels, our proposal supports model- and goal-
based reasoning. Goals are expressed as conjunctions of
concepts represented at a low abstraction level, to guide the
knowledge generation process while the system is gaining
experience. Following the knowledge abstraction method, the
reflective layer incrementally builds its abstract representations
of targeted goals. As the deliberative system considers goal
priorities when generating the required adaptation knowledge,
the cognitive control system layer should support utility-based
reasoning.

VII. RESULTS FROM A SMART HOME SCENARIO

The proposed reflective layer is implemented in Python.
The implementation contains a novelty detection component
mCANDIES [7] 2. The play module uses this to determine
the effects of actions (forward), to identify possible actions
leading to goals (backward), and to perform the knowledge

2https://novelty-detection.net/p/ndnet, last access August 2021

abstraction method. For representing monitoring data in con-
ceptual spaces, we rely on an existing implementation of
conceptual spaces [27] 3. For decomposing vectors during
reactive reasoning, we included the networkx Python package
for handling directed acyclic graphs 4.

In the performed experiments, the play module carries-out
knowledge abstraction to learn from the ContextAct@A4H
dataset [8] 5. The dataset contains over 300 variables moni-
tored over the months of July and November in a smart home
with a single occupant. The only supposition we make about
the data is that the action dimensions (i.e. dimensions available
for control in managed systems) are given.

We suppose as known the conceptual representations on the
power consumption dimension (Water Heater Consumption
6), where there are two defined concepts, the current state and
the goal pursued, i.e. C = { GHighPower, GLowPower }. During the
reasoning process, the play module starts looking for possible
actions that achieve GHighPower from GLowPower (cf. IV). Based
on historical monitoring data, the play module determines the
times t when the goal was achieved in the past, i.e. when the
values measured on the power consumption dimension change
from GLowPower to GHighPower. The learning method performs
online novelty detection at times t determined as above.

The play module determines possible causes of system
states (i.e. abduction). Starting from the state where the
goal pursued is met, our implementation plays in reverse
the historical data to determine the possible actions that
achieve the goal, waiting for a novel cluster to be detected
in order to generate the concepts representing these actions.
For example, the result of this backwards reasoning process
is the cluster of concepts SColdWaterOn and SHotWaterOn, deter-
mined respectively on the Cold Water Shower Consumption
and Hot Water Shower Consumption dimensions. The play
module then generates the SShowerWaterOn abstract concept. The
weights of the dimensions in the generated concept are set as
the magnitudes of the composing vectors. The concept for
shower water is composed of 0.020 cold water and 0.073
hot water. Another concept discovered in the dataset is hands
washing water on. This concept is based on the same low-
level concepts as SShowerWaterOn, however, it is composed of
equally important cold and hot water concepts. Having gen-
erated SShowerWaterOn, the adaptation plan for solving GHighPower

contains only one action ATurnShowerWaterOn. With our previous
proposal, the plan would have been composed of two actions,
ATurnColdWaterOn, and ATurnHotWaterOn.

The play module also generates the effects of these actions
(i.e. deduction), to determine the consequences of the found
solutions in the managed system. The play module updates the
novelty detection component with data available after the times
t, i.e. after the execution of actions, and represents the observed
effects (e.g. GHighGas, determined on the Gas Consumption
dimension). Learning GHighGas concept provides reactive rea-

3https://github.com/lbechberger/ConceptualSpaces, last access August 2021
4https://networkx.org/, last access August 2021
5https://data.mendeley.com/datasets/fcj2hmz5kb/3, last access August 2021
6The dimension names in the ContextAct@A4H dataset are in French.

https://novelty-detection.net/p/ndnet
https://github.com/lbechberger/ConceptualSpaces
https://networkx.org/
https://data.mendeley.com/datasets/fcj2hmz5kb/3


soning capabilities for future adaptations. During both of these
processes (i.e. deduction and abduction), the play module
generates abstract concepts (i.e. induction) based on lower-
level concepts.

VIII. CONCLUSIONS AND FUTURE WORK

We proposed a reflective layer for managing adaptation
knowledge, which provides multi-level online learning and
on the fly reasoning capabilities for SISSY systems. Learning
involves a slow conceptual knowledge abstraction process, and
a fast symbolic knowledge generation process driven by the
goals pursued. The reactive reasoning capabilities occur on the
fly, based on conceptual knowledge whose level of abstraction
is continuously increased by the proposed learning method.

As future work, we are interested in researching the commu-
nication possibilities offered by the modeling language gen-
erated by the proposed approach. Conceptual representations
have the same meaning in conceptual spaces built on the same
dimensions [28], and can therefore be shared between inter-
acting SISSY systems. During self-integration, self-adaptive
systems may grasp new concepts by contrasting their concepts
with concepts available in the integrating systems.

We focused here on a reflective layer to manage adapta-
tion knowledge in single self-integrating system. To extend
these communication capabilities in a collaboration context,
we envision a multi-level approach for the composition of
system of systems [29]. Individual systems self-manage their
adaptation knowledge by generating models driven by their
own goals. They are also part of larger systems, where they
may provide goals to other systems, via collaboration based
on these communication capabilities. We envision a top-down
approach, with central control for the goals pursued, and a
self-organizing approach for collaboration with other systems.

REFERENCES

[1] C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, and C. Becker, “A
survey on engineering approaches for self-adaptive systems,” Pervasive
and Mobile Computing, vol. 17, pp. 184–206, Feb. 2015.

[2] T. Vogel, S. Neumann, S. Hildebrandt, H. Giese, and B. Becker,
“Model-Driven Architectural Monitoring and Adaptation for Autonomic
Systems,” Proc. 6th Int. Conf. Auton. Comput. - ICAC 09, p. 67, 2009.

[3] G. Lehmann, M. Blumendorf, F. Trollmann, and S. Albayrak, “Meta-
modeling Runtime Models,” in Models in Software Engineering, J. Din-
gel and A. Solberg, Eds. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2011, vol. 6627, pp. 209–223.

[4] K. Bellman, S. Tomforde, and R. P. Wurtz, “Interwoven Systems: Self-
Improving Systems Integration,” in 2014 IEEE Eighth International
Conference on Self-Adaptive and Self-Organizing Systems Workshops.
Imperial College, London, UK: IEEE, Sep. 2014, pp. 123–127.

[5] M. Pol and A. Diaconescu, “A Cognitive Control System for Managing
Runtime Uncertainty in Self-Integrating Autonomic Systems,” in 2020
IEEE International Conference on Autonomic Computing and Self-
Organizing Systems (ACSOS 2020), 2020, p. 6.

[6] S. Kounev, P. Lewis, K. L. Bellman, N. Bencomo, J. Camara, A. Di-
aconescu, L. Esterle, K. Geihs, H. Giese, S. Götz, P. Inverardi, J. O.
Kephart, and A. Zisman, “The Notion of Self-aware Computing,” in Self-
Aware Computing Systems. Cham: Springer International Publishing,
2017, pp. 3–16.

[7] C. Gruhl, B. Sick, and S. Tomforde, “Novelty detection in continuously
changing environments,” Future Generation Computer Systems, vol. 114,
pp. 138–154, Jan. 2021.

[8] P. Lago, F. Lang, C. Roncancio, C. Jiménez-Guarı́n, R. Mateescu, and
N. Bonnefond, “The ContextAct@A4H Real-Life Dataset of Daily-
Living Activities,” in Modeling and Using Context. Cham: Springer
International Publishing, 2017, vol. 10257, pp. 175–188.

[9] P. Gärdenfors, Conceptual Spaces: The Geometry of Thought. MIT
Press, 2000.

[10] P. Gärdenfors, “Representing actions and functional properties in con-
ceptual spaces,” in Volume 1 Embodiment. De Gruyter Mouton, 2008,
p. 29.

[11] J.-L. Dessalles, “From Conceptual Spaces to Predicates,” in Applications
of Conceptual Spaces, F. Zenker and P. Gärdenfors, Eds. Cham:
Springer International Publishing, 2015, pp. 17–31.

[12] J. Kramer and J. Magee, “Self-Managed Systems: An Architectural
Challenge,” in Future of Software Engineering (FOSE ’07). Minneapo-
lis, MN, USA: IEEE, May 2007, pp. 259–268.

[13] S. Tomforde, H. Prothmann, J. Branke, J. Hähner, M. Mnif, C. Müller-
Schloer, U. Richter, and H. Schmeck, “Observation and Control of
Organic Systems,” in Organic Computing — A Paradigm Shift for
Complex Systems, C. Müller-Schloer, H. Schmeck, and T. Ungerer, Eds.
Basel: Springer Basel, 2011, pp. 325–338.

[14] Petr Jan Horn, “Autonomic Computing: IBM’s Perspective on the State
of Information Technology,” 2001.

[15] C. Müller-Schloer, “Organic computing: On the feasibility of controlled
emergence,” in Proceedings of the 2nd IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Synthesis -
CODES+ISSS ’04. Stockholm, Sweden: ACM Press, 2004, p. 2.

[16] P. Lalanda, Autonomic Computing: Principles, Design and Implementa-
tion. New York: Springer, 2013.

[17] G. Tesauro, N. Jong, R. Das, and M. Bennani, “A Hybrid Reinforcement
Learning Approach to Autonomic Resource Allocation,” in 2006 IEEE
International Conference on Autonomic Computing. Dublin, Ireland:
IEEE, 2006, pp. 65–73.

[18] M. V. Butz, Rule-Based Evolutionary Online Learning Systems: A
Principled Approach to LCS Analysis and Design, ser. Studies in
Fuzziness and Soft Computing. Berlin: Springer, 2006, no. v. 191.

[19] A. Stein, S. Tomforde, A. Diaconescu, J. Hahner, and C. Muller-Schloer,
“A Concept for Proactive Knowledge Construction in Self-Learning
Autonomous Systems,” in 2018 IEEE 3rd International Workshops on
Foundations and Applications of Self* Systems (FAS*W). Trento: IEEE,
Sep. 2018, pp. 204–213.

[20] M. Lippi, S. Mariani, and F. Zambonelli, “Developing a “Sense of
Agency” in IoT Systems: Preliminary Experiments in a Smart Home
Scenario,” in 2021 IEEE PerCom Workshops. Kassel, Germany: IEEE,
Mar. 2021, pp. 44–49.

[21] K. Fadiga, E. Houzé, A. Diaconescu, and J.-L. Dessalles, “To do or not
to do: Finding causal relations in smart homes,” ArXiv210510058 Cs,
May 2021.

[22] G. Blair, N. Bencomo, and R. B. France, “Models@ run.time,” Com-
puter, vol. 42, no. 10, pp. 22–27, Oct. 2009.

[23] N. Bencomo, J. Whittle, P. Sawyer, A. Finkelstein, and E. Letier,
“Requirements reflection: Requirements as runtime entities,” in Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software
Engineering - ICSE ’10, vol. 2. Cape Town, South Africa: ACM Press,
2010, p. 199.

[24] G. Tesauro, D. M. Chess, W. E. Walsh, R. Das, A. Segal, I. Whalley,
J. O. Kephart, and S. R. White, “A Multi-Agent Systems Approach to
Autonomic Computing,” N. Y., p. 8, 2004.

[25] M. Warglien, P. Gärdenfors, and M. Westera, “Event structure, concep-
tual spaces and the semantics of verbs,” Theor. Linguist., vol. 38, no.
3-4, Jan. 2012.

[26] K. Bellman, J. Botev, A. Diaconescu, L. Esterle, C. Gruhl, C. Landauer,
P. R. Lewis, A. Stein, S. Tomforde, and R. P. Wurtz, “Self-Improving
System Integration - Status and Challenges after Five Years of SISSY,”
in 2018 IEEE 3rd International Workshops on Foundations and Applica-
tions of Self* Systems (FAS*W). Trento: IEEE, Sep. 2018, pp. 160–167.

[27] L. Bechberger and K.-U. Kuhnberger, “A Comprehensive Implementa-
tion of Conceptual Spaces,” ArXiv Prepr. ArXiv170705165, p. 14, 2017.

[28] L. Steels and T. Belpaeme, “Coordinating perceptually grounded cate-
gories through language: A case study for colour,” Behav. Brain Sci.,
vol. 28, no. 4, pp. 469–489, Aug. 2005.

[29] A. Diaconescu, “Goal-oriented Holonic Systems,” in Organic Comput-
ing: Technical Systems for Survival in the Real World, C. Muller-Schloer
and S. Tomforde, Eds. Springer Intl. Pub., 2017, p. 54.


	Introduction
	Solution Overview & Background
	Architectural Overview
	Online Modeling within Conceptual Spaces
	Modeling Language based on Predicates
	Online Reasoning

	Related Work
	Contributions Overview in a Smart Home Scenario
	Multi-Level Online Learning
	Reactive and Deliberative Reasoning

	Conceptual Knowledge Abstraction
	Online Learning and On the Fly Reasoning
	Learning Abstract Concepts
	Reasoning via Concept Contrasting

	Results from a Smart Home Scenario
	Conclusions and Future Work
	References

