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Abstract—Multi-scale configurations are essential for dealing
with system complexity. Yet, a theory for facilitating their cross-
domain implementation is missing. We set the basis for such
theory, by demystifying the core concepts of ‘scale’ and ‘multi-
scale’ from an information perspective. In this view, we define
and apply information abstraction entropy as a measure to assess
and compare system scales.

Index Terms—multi-scale, information, abstraction, entropy

I. MOTIVATION & OBJECTIVE

Multi-scale structures are prevalent in natural and artifi-
cial systems, as they can handle increasing complexity [23],
[16], [17]. Engineered systems, including autonomic, self-
integrating and intelligent systems, can draw key benefits
from such designs. Yet, transferring multi-scale concepts to
these fields requires a multi-scale system theory, focusing
on feedback systems. Our long-term goal is to develop such
theory. This position paper aims to set the required conceptual
basis, by demystifying the key concepts of ‘scale’ and ‘multi-
scale’ via their various usages in relevant contexts.

Several terms are employed almost interchangeably across
application domains relative to the multi-scale notion – e.g., hi-
erarchy, holarchy, multi-level/-layer, nested, embedded, micro-
macro, blurring, or coarse graining [8] [2] [19] [14]. While
the concrete meanings behind these terms may differ slightly,
several core commonalities persist across all cases. We high-
light these common features here, focusing on the special
role of information as a unifying concept across both physical
and computational systems. To render these generic concepts
more concrete, we suggest quantifying them in terms of their
information content, impact, and cross-scale abstraction.

II. PREVIOUS WORK

Many fields have studied multi-scale systems from different
perspectives. Hierarchy theory is concerned with the episte-
mology of the scale concept, viewed as an observer-dependent
construct [1]. It has been mostly applied to the field of ecology,
where scales tend to map onto nested spatial features (e.g.
tree patches nested into forests) [25]. In control engineering,
hierarchical control theory characterises interactions between
multiple control layers [20]. The scale question is central to
many social science theories, which focus on micro-macro
linkages, i.e., how the micro-scale affects the macro-scale, and
vice-versa [6]. Here, as in hierarchy theory, the scale notion

is not fixed [13], although generally micro-scales refer to
individual behaviours, while macro-scales describe social pat-
terns. The question of scales is also prevalent in neuroscience,
where the brain is often described as a multi-scale system
(e.g., the visual cortex architecture [24] [11]). In philosophy
of information, Floridi’s method of levels of abstraction argues
that abstraction levels can be identified with respect to levels
of explanation, organisation, or conceptual schemes [10]. We
aim to identify the commonalities of these specific studies as
a basis for a generic theory of multi-scale (feedback) systems.

In previous work, we highlighted the shared features of
multi-scale structures in natural and artificial domains [5],
and started formalising these via a generic design pattern –
multi-scale abstraction feedbacks (MSAF) [4]. In brief, we
model multi-scale systems as ensembles of information flows,
which are merging and splitting to generate various informa-
tion abstractions (micro-to-macro) and information reifications
(macro-to-micro). In [15], we study the impact of inter-scale
timing on the macro-properties of multi-scale systems.

III. WHAT IS SCALE?

From across dictionary entries1,2,3, the term “scale” has two
main (interrelated) meanings that are relevant to our study:

1) Related to measurement – either the units of measure-
ment (e.g., metric scale) or the instruments of measure-
ment (e.g., weighting scale).

2) Related to a ratio between a real object and a model of
the object (e.g., a map scale). Here, scale can also be
used as a verb – i.e., to scale-up or -down – meaning that
something pertaining to the scaled object increases or
decreases proportionally with that with respect to which
it is scaled. E.g., scaling-up a business, or a computing
process, means that it can deal with more incoming
requests while using a proportional amount of resources.

We associate scale to the measurement of a system of
interest, where such measures can then be used to create
system models, at a certain ratio. Hence, we define scale as
the granularity of observation of a targeted object (Figure 1).
Granularity can represent, e.g., an interval, range, abstraction

1Merriam-Webster online: https://www.m-w.com/dictionary/scale
2Math: https://everydaymath.uchicago.edu/teachers/6th-grade/glossary/
3Collins Dictionary: https://www.collinsdictionary.com/dictionary/english/scale



Fig. 1. Scale: granularity of observation of a targeted object by an observer
– a system view focused on information flows

level, or frequency. Importantly, scale is thus a property of
the observation (which includes representation) and not of
the observed object. Moreover, scale necessarily implies the
existence of an observer, performing the observation. The ob-
server can be any entity that can acquire information from the
system and change based on that information (Cf. Hierarchy
Theory [1]) – e.g., a human observer, and external system or
an internal system entity.

In this view, an information scale is related to the kind of
information acquired by an observer about an observed object.
A “higher” scale refers to a larger, or coarser, granularity of
observation of a targeted object (more abstraction); a “lower”
scale implies a smaller, or finer, granularity of observation of
the same object (more detail). In multi-scale systems, it is often
the case that higher scales provide more abstract information
about larger scopes of the observed object; while lower scales
provide more detailed information about narrower scopes of
the observed object. This limits the amount of information
observed, stored and processed at each scale – thus distributing
the information load across multiple scales.

Importantly, this does not mean that higher scales contain
less information or are less “complex” than lower scales. Nor
does it mean that they contain more information or complexity.
They merely contain less detailed information about each
micro-entity; and often compensate by observing multiple such
micro-entities and their interrelations. Hence, the amount of
information held by a macro-entity may be larger, smaller, or
equal to that held by each of its observed micro-entities.

In the following, we highlight the key role of information
as a unifying factor across scales and application domains.

IV. INFORMATION SYSTEMS

Observation is the acquisition of information about an object
of interest. Generally, such observation may or may not lead
to the analysis of the acquired information, and to some sort
of action or change in the observer (the receiver of that
information). As we focus on a phenomenological system
view, we are mostly interested in cases where observation
leads, eventually, to an observable change (even if after a delay,
e.g., via storage and later processing).

Hence, for the purpose of our study, we consider the
definition of information as an observable difference or change
in an object that propagates and triggers change in an
observer. This view is consistent with the semantic definitions
of information [12] [9], viewing information not only as a
material flow (data), but as something to be received and
interpreted (data + meaning). An information flow, thus, is a

series of events, or changes, that lead to changes in an observer
(the recipient of that information flow).

Thus, we can model our generic system of observed objects,
observations, and observers (Figure 1) as an ensemble of infor-
mation flows influencing each other: an observed information
flow propagates changes via an observation information flow
leading to changes in an observer information flow. We link
this informational system model to physical systems as follows
(extension of considerations in [5]).

Fundamentally, a physical object is some sort of process –
i.e., a series of changes in observable variables happening in
some order [18]. When a process keeps its identity, tied to a
set of variables and their values, unchanged for a relatively
long period (from the observer’s perspective) we consider the
process to be an entity; and consider the few variables that
do change to define the entity’s state (e.g. a stone, keeping its
structure static for a long period, while changing its position
and speed variables, in the eye of its observers).

Information flows are linked to physical processes, or enti-
ties, by the fact that any piece of information must rely upon,
or be encoded onto, a physical substrate (even if the same
information may be encoded onto various physical substrates).
This is consistent with the findings in [3], where a piece
of information about a physical object requires a minimum
amount of energy (or negative entropy – negentropy) to be
extracted. This information can then be employed to create
some energy in return (negentropy), while of course abiding
to the second law of thermodynamics.

Based on the above considerations, we model a system
as a network of information flows, which change, observe,
and adapt to each other repeatedly. Each information flow
may be observed by other information flows, via yet other
information flows. The system is populated by information
flow triplets: i) an observed information flow, ii) an observation
information flow, and iii) an observer information flow (Figure
1). Information scales may vary across such information flow
triplets within a system. To simplify, we only refer in the
following to observer-observed pairs, implicitly including the
observation flow connecting them. While we keep the three
kinds of information flows separate, we can consider the
system as a network of information flows that run in parallel,
merge into each other, and split at various points (e.g., just like
we distinguish between rivers with different names, whereas
they merely represent a large network of water flows). As
information flows can represent changes in processes, entities,
or systems, we use these terms interchangeably next.

V. KINDS OF SCALES

What kinds of scales are we talking about? The kinds of
scales of interest are related to the kinds of observed variables
(of interest to the observer). This, in turn, depends on the
targeted domain of application or study, and on the appropriate
scale for that application or study. E.g., the observed variables
of interest for most physical objects are related to space and
time. The variables of interest for a computing system may be
related to the usage of processing, storage, and communication



resources; to the number of component instances and their
interrelations (i.e., structural models); or to the client-triggered
call-paths through the system (i.e., behavioural models). These
computing variables are all information-related, even if ulti-
mately traceable to physical processes.

In physical studies, considering space as an observable
dimension already implies a minimum abstraction, or granu-
larity of observation, as this dimension won’t be found at the
quantum scale [18]. Thus, space already represents an abstract
variable only perceivable by observers at “larger” scales. At
smaller scales, we may consider instead the frequencies or
energy needed for observation (out of scope). We can still
consider space as an observable variable for most physical sys-
tems, unless we analyse quantum (computing) systems. Hence,
it is useful to consider spatial scales. Similarly, temporal scales
are relevant for all processes, physical or computational, as a
local means of ordering observations.

Spatial scale typically represents a unit interval, area, or
volume over which observations are made. Observations here
are about spatial properties, structures, or shapes. Thus, spatial
scale refers to what is observed. Temporal scale refers to the
frequency of observation. It refers to when observations are
made, yet not to what is observed (e.g., spatial properties). At
“higher” scales, information acquired via an observation can,
in itself, represent variables of further observation, at even
higher scales. This is the case when monitoring information
variables of computing processes (e.g., the state of a Java
Object or of an e-shopping basket). This means that we can
talk about information scales, or abstraction levels.

What does it mean for a system to ‘operate’ at a certain
scale? We understand by this that the system’s variables are
observed at a certain granularity. The observers, which may
or may not be part of the same system, may operate at the
same scale, or at different scales. In a single-scale system,
all processes observe each other at similar scales, and change
accordingly. A system (or system-of-systems) where different
parts operate at different scales is referred to as a multi-scale
system, i.e., a system observed at multiple granularities. It
implies the existence of observers that perform some sort of
mapping, or translation, between scales: observing variables
of entities that operate at a lower scale and abstracting these
for entities that operate at a higher scale; or the opposite, from
higher to lower scales. We refer to an entity operating a higher
scale as a higher-scale entity (macro) and to an entity operating
at a lower scale as a lower-scale entity (micro). Higher/lower
and macro/micro are relative to each pair of scales.

Generalising across physical and informational objects, and
in line with the above definition of information, we reduce our
focus to information scales only (and associated time scales
of observation). Hence, multi-scale systems are ensembles of
information flows that observe each other and that may be
observed externally at different scales (micro and macro). The
scale of observation represents the interval, range, granularity,
or abstraction level at which information is acquired.

VI. MULTI-SCALE FEEDBACK SYSTEMS

When information cycles between scales of observers, it
forms multi-scale feedback loops [5]. Information about a
lower scale (micro) is abstracted onto entities at a higher scale
(macro), and this abstraction, in turn, is observed at the lower
scale (micro), leading to adaptation. Hence, the higher scale
observes the lower scale, and the lower scale observes the
resulting abstraction from the higher scale (Figure 2). The
observers of such multi-scale feedback systems are internal
to the system (i.e., entities or processes that belong to the
system).

The advantage of such multi-scale feedback loops lies in
allowing individual micro-entities to access abstract informa-
tion about the entire state of a set of micro-entities, possibly
including themselves. Using abstract information instead of
detailed information lowers the amount of resources needed
to communicate, store, and process it [4]. Hence, it allows for
a large set of micro-entities to coordinate based on abstracted
information about their collective state, thus using a limited
amount of resources (i.e., addressing H. Simon’s “bounded
rationality” problem [22]). Abstracted information can also
form a stable variable for the decision-making of micro-
entities, changing slowly as to reduce the uncertainty that
micro-entities have about the state of the (abstracted) macro-
entity [7]. This allows multi-scale systems to accommodate
increasing levels of complexity (which does not mean that
higher levels are more complex, only that the system as a
whole can become more complex – able to handle more
information flows and coordinate in the face of more changes).

VII. HOW TO QUANTIFY SCALES

A. Quantifying Abstraction

Various approaches may increase the abstraction of higher
scales, from lower abstractions at lower scales – e.g., via
sampling (at every granule interval, e.g. a unit area for space)
or aggregating (over each granule interval, e.g., by averaging).
This results in an abstraction of information from lower scales
(micro) to higher scales (macro), where information details
about the micro scale are lost at the macro scale. But how
can we measure this information gap, or abstraction, between
scales?

We propose using the notion of information abstraction
entropy to quantify information loss between micro and macro
scales. The abstraction entropy of a macro-entity’s value is
a function of the number of micro-state combinations that

Fig. 2. Multi-scale feedback system: observers are internal system processes



could result in that macro-value (possibly weighted by the oc-
currence probabilities of these micro-state combinations). The
function must be monotonically increasing with the number of
micro-state combinations. Similarly to Boltzman’s equation for
ideal gases, this function can be logarithmic: S = kB ∗ ln(W ),
with S the entropy, kB Boltzman’s constant and W the number
of micro-states corresponding to the gas’ macro-state.

E.g., consider a macro-variable that takes the sum value of
four binary micro-variables (see decentralised task-distribution
in [4]). If that macro-value took value 2, then its abstraction en-
tropy would be a function of the six possible combinations of
micro-values that could produce that sum: {0,0,1,1}, {1,1,0,0},
{0,1,0,1}, {1,0,1,0}, {1,0,0,1}, or {0,1,1,0}. Similarly, con-
sider that the macro-entity samples the sum value every 2 time
steps versus every 10 steps. Then the less frequently sampled
sum would include micro-variable information across a larger
interval of time and thus would have higher abstraction entropy
compared to the case of more frequent sampling. Hence, the
abstraction entropy measures the amount of uncertainty about
the micro-scale that is hidden at the macro-scale.

B. Value Abstraction Entropy
We suggest formalising these ideas via entropy formulae

from statistical physics (Boltzmann Equation4) and Shannon’s
Mathematical Theory of Communication (MTC) [21]. We
define abstraction entropy for a macro-variable’s value based
on the values of the micro-variables that it is abstracted
from. Consider N micro-variables x = (x0, x1, .., xN−1)
which are abstracted via a function fa to a macro-variable
y = fa(x) ∈ {vk|k = 0..K − 1}, where K is the number of
distinct values in the range of fa. Denote the macro-variable’s
value abstraction entropy as S(vk), which for binary variables
is defined by:

S(vk) = log2 W (vk) (1)

Here, W (vk) is the number of combinations of micro-variable
values that result in fa(x) = vk. Consider the previous
example of four binary micro-variables xi ∈ {0, 1}, i = 0..3,
occurring with equal probability and a sum abstraction func-
tion leading to a macro-variable y =

∑3
i=0 xi. Then for each

macro-value y ∈ {0, 1, 2, 3, 4}:
• S(0) = S(4) = log2 1 = 0
• S(1) = S(3) = log2 4 = 2
• S(2) = log2 6 = 2.585

Note that these values are the same irrespective of the number
of intermediate scales between the bottom and top scales
considered above (assuming perfect micro-macro abstraction
information) – to be extended in future work. Generalising
to N binary micro-variables, the number of combinations of
micro-values resulting in any Vsum ∈ {0, 1, .., N} is:

W (Vsum) =
N !

Vsum! ∗ (N − Vsum)!
(2)

Hence, the value abstraction entropy for each Vsum is:

S(Vsum) = log2 W (Vsum) (3)

4https://scienceworld.wolfram.com/physics/BoltzmannEquation.html

Similarly, if abstraction were achieved via a max function,
y = max

i∈{0..N−1}
(xi) ∈ {0, 1}, then W (0) = 1 and W (1) =

2N − 1. Thus there are two possible values for S, S(0) = 0
and S(1) = log2(2N − 1).

The definition of S(vk) can be extended to include cases
in which the macro-scale operates at a slower rate than the
micro-scales. First consider the situation where a macro-entity
samples the micro-values every J cycles before applying
the abstraction function, leading to the non-sampled micro-
values being lost. For N binary micro-variables, the number
of combinations that result in vk is W (vk)× 2N(J−1) and the
value abstraction entropy of the macro-values becomes:

SJ(vk) = N(J − 1) + log2 W (vk) (4)

Considering the previous example of four binary micro-
variables with the sum abstraction function, the value abstrac-
tion entropy for each value of y ∈ {0, 1, 2, 3, 4} when sampled
every 2 cycles are:
• S2(0) = S2(4) = log2 16 = 4
• S2(1) = S2(3) = log2 64 = 6
• S2(2) = log2 96 = 6.585

Similarly, when sampled every 3 cycles the values are:
• S3(0) = S3(4) = log2 256 = 8
• S3(1) = S3(3) = log2 1024 = 10
• S3(2) = log2 1536 = 10.585

Note that the macro-value abstraction entropy becomes higher
with larger sampling intervals due to more information loss.

Now consider the situation where micro-variables are av-
eraged over the J cycles before the abstraction function is
applied. Denoting this value abstraction entropy as SJ,ave(vk),
one can expect that S(vk) ≤ SJ,ave(vk) ≤ SJ(vk). However,
there are more values for vk due to the averaging. E.g.,
for N=4, J=2, y ∈ {0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4}, the value
abstraction entropy is:
• S2,ave(0) = S2,ave(4) = log2 1 = 0
• S2,ave(0.5) = S2(3.5) = log2 8 = 3
• S2,ave(1) = S2,ave(3) = log2 28 = 4.807
• S2,ave(1.5) = S2,ave(2.5) = log2 56 = 5.807
• S2,ave(2) = log2 70 = 6.129

Note that S(vk) ≤ S2,ave(vk) ≤ S2(vk) for vk = 0, 1, 2, 3, 4
(no comparison is possible for 0.5, 1.5, 2.5, 3.5). Also note
that S2,ave(0) = S2,ave(4) = 0 because there is no uncertainty
about the values of the micro-variables, even at the in-between
samples. All micro-values must be 0 (or 1) for y = 0 (or 4).

C. Variable and Micro-Macro Abstraction Entropy

We now aim to quantify the overall entropy of a macro-
variable y, considering all its values vk and their underlying
micro-values xi. We employ the Shannon entropy to quantify
the macro-variable’s entropy (as a measure of its values’
variability). We then use the difference between this ‘macro’
entropy and the ‘micro’ entropy of the underlying micro-
variables to quantify the variable abstraction entropy (i.e.,
entropy difference between the macro and micro scales).



Thus, considering N binary micro-variables connected to a
macro-variable via an abstraction function y = fa(x), we first
define variable entropy as:

Hfa(y) = −
K−1∑
k=0

p(vk) log2 p(vk) (5)

with p(vk) the probability that y = vk.
When N = 4 and fa is the sum function, y =

∑3
i=0 xi and

y ∈ {0, 1, 2, 3, 4}, and assuming each xi has value 0 or 1 with
equal probability, we have:
• W (0) = W (4) = 1, hence p(0) = p(4) = 1

16
• W (1) = W (3) = 4, hence p(1) = p(3) = 4

16 = 1
4

• W (2) = 6, hence p(2) = 6
16 = 3

8

Thus, the variable entropy for the sum function becomes:

Hsum(y) = − 2

16
log2

1

16
− 2

4
log2

1

4
− 3

8
log2

3

8

=
1

8
∗ 4 +

1

2
∗ 2 +

3

8
∗ 1.415 = 2.03 (6)

For a scale with several independent variables, we can
define the scale entropy as the sum of Hfa(y) taken over
all variables at that scale. E.g., given a scale with multiple
variables y = (y0, y1, .., yN−1), its scale entropy is given by:
Hfa(y) =

∑N−1
i=0 Hfa(yi). In the above example, assuming

four variables xi each having value 0 or 1 with equal proba-
bility, the scale entropy at the micro-scale is:

H(x) = −
3∑

i=0

[p(0) log2 p(0) + p(1) log2 p(1)]

= −
3∑

i=0

(
1

2
log2

1

2
+

1

2
log2

1

2

)
= 4 (7)

Note the absence of the “fa” subscript on H due to the lack
of an abstraction function generating the xi.

We define the variable abstraction entropy as:

∆Hsum(x, y) = H(x)−Hsum(y) = 4− 2.03 = 1.97 (8)

Similarly, for the max abstraction function y =
max

i∈{0..N−1}
(xi),

Hmax(y) = − 1

16
log2

1

16
− 15

16
log2

15

16
= 0.34

We notice here that Hmax(y) = 0.34 is considerably smaller
than Hsum(y) = 2.03. This makes sense as the distribution of
macro-values is more varied for the sum (higher entropy) than
for the max (lower entropy). The variable abstraction entropy
when using max abstraction function is:

∆Hmax(x, y) = H(x)−Hmax(y) = 4− 0.34 = 3.66 (9)

We note that the value 3.66 obtained via max is larger than
the value 1.97 obtained via sum. This makes sense as max
“loses” more information from the micro scale than sum does
(i.e., macro variable y only takes two values when using max
and four values when using sum).

Importantly, the above formulae only consider abstractions
fa occurring at an instant t. If a macro-value were abstracted
from micro-values collected over an interval ∆t, its abstraction
entropy would increase with that interval’s length, depending
on the frequency of micro-value changes during that interval.
To asses this latter case, we again consider interval sampling
and averaging aggregates. In the worst case, with independent
micro-values across cycles, the micro-scale entropy is:

H(x) = −JN [p(0) log2 p(0) + p(1) log2 p(1)] (10)

where N is the number of binary micro-variables and samples
taken every J cycles. At the macro-scale, the values Hfa(y)
remain the same when sampling occurs because, although
the number of occurrences resulting in a given vk increases,
the probability of those occurrences is unchanged. However,
if averaging is used, the number of occurrences and their
probability change, as well as the number of possible macro-
values. Specifically, for N=4 binary micro-variables and a
sum abstraction, the abstraction entropy is given in Table I.

Sampling H(x) Hsum(y) ∆Hsum(x, y)
Every cycle 4 2.03 1.97
Every 2 cycles 8 2.03 5.97
Every 2 cycles with averaging 8 2.54 5.46
Every 3 cycles 12 2.03 9.97
Every 3 cycles with averaging 12 2.84 9.16

TABLE I
ABSTRACTION ENTROPY (N=4, SUM fa , J ∈ {1, 2, 3})

Note that obtained values conform to expectations, as values
of variable abstraction entropy obtained with less frequent
sampling are larger compared to more frequent sampling (1.97
vs. 5.97 vs. 9.97). Also, averaging over each interval results
in lower value (5.46 vs. 5.97 and 9.16 vs. 9.97). These results
confirm that more information loss between levels leads to
larger variable abstraction entropy values.

D. Quantifying Data and Information

The micro-macro abstraction entropy is different from (i) the
amount of data available at each scale (an absolute measure)
and (ii) the amount of information cycling across scales.
When measuring information, Shannon’s MTC quantifies the
information content of a signal travelling from a source to
a destination via the degree of “surprise” of the message
(the higher the probability of that message, the lower its
information content). The channel capacity, then, sets a limit
for the maximum amount of information that can be carried
through a medium per time.

However, this differs from the amount of semantic infor-
mation [9]: while transmission of data across channels is
independent of its interpretation by a receiver, an observer-
dependent view focuses on information as data + meaning.

Hence, in terms of data quantification, we may employ
Shannon’s theory or simply consider the amount of resources
required to encode, store, transmit, and process the data
(e.g., [5]). Going beyond syntactic data, we are interested
in the amount of semantic information cycling across scales.



For autonomic and self-integrating systems, it is essential to
estimate acquired information in terms of its effects on the
system’s adaptation (with respect to its goals). Considering
information in terms of change (in the receiver), semantic
information in multi-scale systems is tied to the amount of
change generated by the received information with respect to
an entity’s current state and to the system goal. Hence, we
cannot say whether there is more or less information at a scale
rather than another, but can only compare changes with respect
to one another (at a scale). The magnitude of change at each
scale depends on:

1) The amount of data received and processed (determined
by the source’s available data, the channel’s capacity and
the receiver’s processing capacity);

2) How different the data received is from what is already
known/stored (Shannon’s information content);

3) The capacity of each entity to change its state, towards
its goals (different from channel & processing capacity).

The amount of semantic information will also depend on the
time over which this change takes place – we suggest that
the amount of information is tied to the amount of change
produced over the amount of time taken for the change. These
initial considerations will be further formalised in future work.

VIII. SUMMARY AND FUTURE PERSPECTIVES

This short paper aimed to clarify notions of scale and
multi-scale as a conceptual basis for a theory of multi-scale
(feedback) systems. It proposed an information-oriented ap-
proach to help transferability across application domains. We
modelled systems as information flows, or change sequences,
merging and splitting to form higher or lower scales of
information abstraction. We also suggested several ways to
quantify multi-scale information flows: abstraction entropy
(micro-macro gap); data amount (encoding resources); and
information amount (incurred change magnitude).

Future work will further refine and formalise these measur-
ing concepts, and study their applicability to specific domains.
A difficulty is that abstracted information, e.g., models, may
be hard (or impossible) to quantify. A key related question is
how to determine the viable or optimal abstractions, or scales,
for each system, considering its particular context and goals.
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