Lensing: It 1s All About Perspective

Ada Diaconescu®, David KingT, Kirstie Bellman?, Christopher Landauer?, Phyllis Nelson?
*Telecom Paris, IP Paris, LTCI, Paris, FR
tAir Force Institute of Technology, Dayton, Ohio, USA
1 Topcy House Consulting, LA, USA
§ California State Polytechnic University, Pomona, CA, USA

Abstract—Complex Adaptive Systems (CAS) are difficult to
understand and predict. Certain CAS phenomena can only be
observed at certain abstraction levels — e.g., swarm dynamics
cannot be analysed by only tracking one individual. In most
current systems the “right” abstraction levels for each question
asked, or each problem solved, are determined at design time. Yet,
in adaptive self-integrating systems the abstraction level must be
determined dynamically, depending on the questions encountered
and the system context. This position paper aims to set-up the
basis for a research initiative in this direction. It proposes the
concept of ‘lensing’ to tune a system’s observation granularity
in terms of spatial and temporal scope, and information detail.
It further introduces lens efficacy and efficiency to evaluate a
lens’ ability to answer specific questions — a critical process for
self-aware systems performing lensing at runtime. Finally, the
paper illustrates the criticality of lensing in answering different
kinds of questions via several examples of collective movement
systems, including a Game of Life (GoL) Glider simulation.

Index Terms—Keywords: lensing, abstraction, hierarchy, col-
lective movement, complex adaptive systems, game of life

I. INTRODUCTION

Answering questions about Complex Adaptive Systems
(CAS) can be quite challenging. One of the hallmarks of
complex systems is their hierarchical structure [1], [2], [3]
(i.e., organized into multiple scales, abstraction levels or
layers). The adaptive behavior of complex systems may lead
to the occurrence, transformation or disappearance of certain
abstraction levels within the system’s hierarchy.

Different phenomena (i.e., properties of system state or
behavior) can be observed more easily, or are only observable
at certain system abstraction levels. Hence, answering different
questions require system observation and analysis at suitable
abstraction levels. In most current systems this “right level
of abstraction” — with its terms, ontology, and semantics; as
well as its associated analysis and reasoning processes — is
all done at design time (e.g., for simulation purposes [4]).
However, in self-adaptive and self-integrating systems this
suitable abstraction level must be identified during runtime,
based on the latest system structure; and then adapted dynam-
ically to reflect further system changes. We can generalize
this challenge by noting that the kind of processes required
to answer questions about a system are also required to solve
problems, accomplish tasks, or reach goals for that system
(e.g., which set of components to employ and how to integrate
them for obtaining a desired system state or behavior?).

In this position paper, we first illustrate how critical it
is to choose the right abstraction level for different types

of questions. We note that such questions will necessarily
concern an Observer, which may be external or internal to the
observed system (e.g., a human or another system attempting
to understand or communicate with the observed system). We
propose the concept of ‘lensing’ to refer to the Observer’s
runtime adaptation of the system’s observed abstraction level.

We consider each ‘lens’ to represent the granularity and
range of observation of a system, in terms of: i) space scope
— i.e., how large is the observed system area; ii) time scope
— i.e., how long is the observation interval or frequency;
iii) resolution — the smallest distinguishable unit; and iv)
information — i.e., which resolution, or amount of detail does
an observation provide; which variables or aspects are in/out
of the observation focus. Lensing emphasizes the Observer’s
quest to select the appropriate lens for answering specific
questions, at runtime.

We take as a simple-to-understand example the questions
that an Observer could associate with the movement of a
herd of cattle. A first set of questions may include: Is there
a herd? Are there several herds? Is the herd moving? How
fast and in what direction? To answer these questions, the
Observer does not need details of each animal — group-
detection and the group centroid may suffice. Now consider a
further question: How many cows are in the herd? To provide
an estimate answer, the Observer needs to determine the herd
area (space scope) and density (about how many animals per
space unit). To provide an exact answer, the Observer needs
sufficient detail to perceive each animal. This simple example
shows how lensing helps answer different kinds of questions,
with different accuracy: higher-level lenses for general herd
movement questions; middle-level lenses for animal count
estimates; and low-level lens for accurate animal counting.

We further aim to set the basis for evaluating the impacts of
lensing on an Observer’s ability to answer various questions.
We highlight the following key lensing evaluation aspects:

e Lens efficacy: a lens is effective relative to a question
about a system, if it allows to observe the system phe-
nomena that are relevant for answering that question.

o Lens efficiency: while a range of lenses may be effective
for a certain question, some lenses may require fewer
resources for perceiving the phenomena relevant to that
question, compared to the other lenses in the same
effective range. We may then say that a lens is more
efficient than another at answering a question.

To illustrate this basis for lensing evaluation, we introduce
a more concrete simulation model for our herd example —
a Glider in a Game of Life (GoL) Cellular Automata (CA)
[5]. We then introduce various kinds of lenses and evaluate
their efficacy and efficiency to answer the exemplified herd
questions.

The paper’s key contributions include:

o proposing the lensing concept for selecting suitable ab-
straction levels for answering questions at runtime;

e proposing lensing efficacy and efficiency as means to
evaluate a lens’ suitability to answer a question;

« illustrating the above concepts via several examples re-
lated to collective movement (i.e., herd and GoL Glider).

The above contributions set a preliminary basis for a more
comprehensive theory of CAS lensing.

II. BACKGROUND AND RELATED WORK

At its core, the proposed lensing notion focuses on an
Observer’s perception of an observed system. The Observer
may be a human user, the system itself (i.e., self-aware
system), or another artificial system (i.e., context-aware). Each
lens may model the system at a different granularity (e.g., as a
set of interconnected components, or as an integrated whole).
To use the language of emergentists [1], lenses describe macro
and micro-level behaviors and structures. In essence, lensing
implies acquiring sets of abstractions and switching amongst
them in an attempt to identify particular system properties.

A key viewpoint is that complexity is in the eye of the
Observer and the Observer is the pivotal point of view [3]. As
argued by Salthe [6], system representations of the world will
never be complete. Hence, we assign abstractions to describe
system structures and behaviors from different perspectives
and granularities, to reach given objectives. These abstractions
can take many forms — one of the most prevalent in the
CAS literature advocates the composition and decomposition
of hierarchical structures within self*-systems [2], [3], [6].

John Holland, an early and leading advocate for developing
theories about self*-systems, included hierarchical organiza-
tion as an integral part of CAS [1]. However, as Holland
refined his theories on CAS, he advocated the use of the
term niche to describe bounded areas of an ecosystem [7].
Niches represent a perspective lens that takes into account
what agents or components work within a specific physical or
metaphysical boundary. Niches model agent interactions and
the types of signals that occur both internally and externally
to the niche. A niche is not a hierarchical model. It is more
of a flat, or horizontal, model that partitions the ecosystem
into manageable, micro-level wholes connected only through
signals that bind them together which can create temporal
hierarchical, or even heterarchical, constructs.

Finding the “right” abstraction level for system modelling
with respect to a given objective has been an ongoing problem,
for both ‘classic’ and self-* systems. Although an Observer’s
models are system abstractions and can never provide com-
plete system representations, they can still provide enough
information to reach certain objectives, solve problems or

System Notional Lenses

A .

@D P
T]E oG !
' | LGN ®8 ce D@®
.~ |F ® | _
B \8 HY e @ Ge He

s S Hierarchical Control Lenses

Fig. 1: Notional lensing of an agent-based system (extended
from [6]) — Left: structural system lens based on composites;
Right: hierarchical control lens based on causal relations;
Additional lenses may include: Entity Lenses (Lens]: position
of A; Lens2: pos. of B, C, D; Lens3: pos. of E, F, G, H);
Comparative lenses (Lens4: C is larger than B and D);
Containment lenses (Lens5: C contains 3 objects, B 1 object).

answer questions (e.g., what is the system doing and what will
it probably do in the future? from the Observer’s perspective).

Lenses can provide system abstractions along diverse di-
mensions: e.g., spatial (scope and granularity), temporal (in-
terval or frequency) or informational (aggregation, filtering,
selection). The level of abstraction can then shift along each
such dimension to produce further lenses. In the herd example
(sec. I), the spatial scope represents the area of observation
(e.g., including the entire herd or just part of it) and the
spatial resolution the observation granularity of the scope (e.g.,
the entire herd or each cattle; or, the size of spatial units at
which the spatial scope can be seen). The observation interval
indicates the length of time over which the system is observed
to detect something; and the frequency refers to the observation
rate [8] (e.g., observing the herd every 5 minutes for 30
seconds to survey its movement trajectory). Finally, collected
information can be transformed into higher-level concepts to
provide meaningful semantics with fewer resources (e.g., only
tracking the herd’s centroid rather than following each cattle).

When studying a CAS, one develops not just one lens,
but multiple lenses, each dedicated to presenting different
representations of multiple system constructs at the macro and
micro-levels. These lens representations can be aggregated into
higher-level models or studied independently. A lens at a lower
tier of a hierarchy could feed information to lenses above, thus
acting as an information filter or aggregator, up and down
and across the system structures. These lenses create different
models, at different abstraction levels, via which an observer
can adjust its viewpoint dynamically. Observers may also
create lenses on-the-fly, by adding, subtracting, aggregating,
disassembling lenses and lens outputs, at various granularity
levels, to better understand the observed system.

Figure 1 provides an example of how one could construct
various lenses to describe a composite system from various
perspectives. To the left is a structural lens of an observed
system. Structures B-C-D compose A, and as indicated by
their boundaries, E composes B, F-G-H compose C, and D is
a lone entity. We can then have different lenses for describing
the system from various perspectives and abstraction levels.

To the right, we have a control lens, where A controls all
the entities that compose it, and then, by extension, those
smaller entities then control their component parts. Still, this
hierarchical control lens only tells a part of the entire story.
There are other potential lenses, e.g., comparative (B is smaller
than C) or positional lenses (B, C & D reside within A).

Each lens presents different kinds of information about the
system, in a unique manner. The abstractions used have a
certain semantics for the Observer who can, over time, use
lenses to describe the system structures and/or behaviors and,
hopefully, to anticipate the changes it may undergo. It is
important to note that this representation is a snapshot and
we must not forget that we need a series of representations to
derive meaning and function from observation.

The lensing concept is similar to that of (multi-)scaling in
[9] [10], yet only focusing on system observation and analysis,
rather than on entire feedback control loops. Lensing is also
similar to notions of coarse-graining [11] or blurring [12], yet
focusing on an Observer’s quest to find and adapt appropriate
abstraction levels for various questions.

Adaptive multi-level modeling is also similar to lensing.
E.g., [13] propose to employ adaptive abstraction levels for
offline system modelling. They aim to optimize simulation
resources, by adjusting the abstraction level of the system’s
model during the simulation. Abstractions are adapted to
maintain the desired properties (i.e., simulation objectives)
while minimizing required resources, at any one time.

Comparatively, we focus on finding the best abstraction
level (lens) for solving a particular problem, or answering
a particular question about the system, at runtime (i.e., lens
efficacy). The question of optimizing lensing efficiency is
secondary. Our objective is compatible with that in [14], which
proposes an approach for generating models at the appropriate
temporal grain, or scale, for solving a given problem.

III. GAME OF LIFE: GLIDER EXAMPLE
A. Simulation Overview

We start by implementing our theoretical example of group
movement via a simple Cellular Automata (CA) simulation,
using the Game of Life (GoL) rules [5] and an initial state that
produces one Glider (i.e., Java simulation). The Glider features
4 states (Cf. top row of Fig. 2), which repeat via 4-step cycles
as the simulation advances. All Glider states consist of 5 live
cells that occupy a CA grid patch of 3x3 cells. At each cycle
the patch that the Glider occupies moves down by one row
and right by one column. Fig. 2 depicts the Glider movement
over 3 cycles (12 simulation steps). It shows a part of the
CA grid composed of 36 cells (6x6), which we divide into 4
patches (3x3). Over the 3 cycles, the Glider moves diagonally-
down from Patch 1 (top-left corner) to Patch 4 (bottom-right
corner). This shows the Glider’s linear diagonal movement (at
a 45 degree angle). In the presented experiments, we ran the
simulation for 36 consecutive steps (9 cycles), using a CA grid
of 40 x 80 cells in size.

We aim to show how viewing the Glider simulation via
various lenses enables an external Observer to achieve various

tasks or answer various questions. Via a bottom lens (Lens0)
we can observe the simulation at the cell level (highest
resolution available). We introduce two additional lenses that
only observe the Glider simulation at the patch level (3x3
cells resolution). That is, the CA simulation grid is divided
into 3x3 patches and each patch is mapped to a single cell in
a higher lens. The cell in the higher lens is ‘live’ (colored) if
the number of cells in the associated lower patch is higher or
equal to an abstraction-threshold; and ‘dead’ otherwise (grey).
We set the abstraction-threshold = 1 for Lensl; and = 2 for
Lens2. Fig. 3 shows the corresponding states of Lensl and
Lens?2 for the first 4 simulation steps.

Fig. 2: Glider simulation (Lens0): 4 states in a Cycle (Step 1
to 4, top row). In each Cycle the Glider moves one row down
(stepl-step2) and one row right (step3-step4). Each Glider
state fits within a patch of 3x3 cells (e.g., 4 patches shown
above, in yellow — numbered 1, 2, 3, 4). Over 3 Cycles (12
Steps) the Glider moves diagonally from patch 1 to patch 4.

Stepl Step2 Step3 Stepd

Lens1 u I:l H :i
Lens 2 . . ’ -

Fig. 3: Two Glider Lenses: map 3x3 cell patches from bottom
lens to 1 higher cell in higher lens. Higher cell is live if the
number of live cells in the lower patch is higher or equal to a
threshold, which equals 1cell for Lensl and 2cells for Lens2

B. Group detection and movement analysis

1) Questions: We ask the Observer the following questions
(requiring corresponding fasks):

1) is there a Glider? task-1: detect a group of live cells;

2) is the Glider moving? task-2: detect group movement;

3) where is it going? task-3: estimate group trajectory.

2) Analysis method: We assume that the Observer has
access to the lowest lens (Lens0), hence to the entire sim-
ulation state. To detect groups of cells (task-1), the Observer
analyses the entire CA simulation and clusters into groups all
live cells that neighbor each other directly — i.e., one Glider

detected at each simulation step. To detect movement (task-
2), the Observer introduces a new lens that only keeps the
centroid of each group (Lens0 — core). The Observer plots
the group centroids on a 2D graph, roughly mapping onto the
CA simulation grid. If a group’s centroid is changing position
in time then the Observer concludes that the group is moving.
Finally, to determine a moving group’s trajectory (task-3), the
Observer uses linear regression to find the linear function that
best approximates the group’s plotted centroids. It is well-
known that all sustained and unobstructed movement in GoL
is linear with rational slopes.

In summary, to achieve its tasks, the Observer employs a
pair of lenses (e.g., LensO and LensO-core). It also applies
the same process above (for task-1 to -3) when observing the
Glider via the two higher lenses (Lensl and Lens2); and their
respective pairs (Lensl-core and Lens2-core).

3) Lensing Efficacy: Fig. 4 depicts the results when observ-
ing the Glider through LensO-core and Lensl-core. Lens2-core
produces results similar to Lensl-core (not shown for space
limitations). In both cases, we note that the Observer can
accomplish all tasks: detecting the Glider (task-1); detecting
its movement (task-2); and determining its linear trajectory.
The trajectory equations obtained are:

e via LensO-core: —0.99 x + 38.47,

e via LensI-core: —0.86 x + 39.04,

e via Lens2-core: —0.8 x 4+ 39.31,
which makes sense since all of these trajectories actually have
a slope of -1.

4) Lensing Efficiency: We established above that all three
pairs of lenses (Lens0, Lensl and Lens2) were effective
for reaching the Observer’s movement analysis tasks. We can
now estimate how efficient the three lenses pairs were in this
respect. We first discuss the difference in resource usage and
then compare the accuracy difference of the trajectories.

For group detection (task-1) the Observer must analyze the
entire simulation grid (e.g., 40x80 = 3200 cells) when using
Lens0. This can be reduced by up to 9 times when using the
higher lens patches (3x3) — e.g., grid of 14x27 = 378 cells for
Lensl and Lens2, hence 8.5 times less than for LensO.

For centroid plotting (part of task-2), the Observer must
analyze all live cells in each group at each step — i.e., 5 live
cells via Lens0, hence 20 cells per 4-step cycle; 8 cells per
cycle via Lensl1 (Cf. Fig. 3); and 6 cells per cycle via Lens2.
For our 36 step simulation (9 cycles), this results in analyzing
180 cells via Lens0, 72 cells via Lensl and 63 cells via
Lens2. Hence, this resulted in 2.5 reduction factor when using
Lensl and 2.8 reduction when using Lens2, relative to using
Lens0.

To detect movement (part of task-2) and identify its trajec-
tory (task-3), the Observer must analyze all plotted centroids
(e.g., within a history window for long observations). In our
36 step simulation, this resulted in 19 points for Lens0 (Cf.
left of Fig. 4); 7 points for Lensl (Cf. right of Fig. 4); and
7 points again for Lens2 (not shown). This implies a 5 times
reduction factor when changing from a lower lens (Lens0) to
one of the higher lenses (Lensl or Lens2).

Finally, we calculate the angle of the trajectory’s linear
function (as the arctangent of the x factor, ignoring the sign):
44.7 degrees for Lens0; 40.7 degrees for Lensl (hence 4
degree error); and 38.67 degrees for Lens2 (hence 6,3 degree
error). This gives an error of 0.3degrees (0.6%) for Lens0;
4.3degrees (9.5%) for Lensl; 6.33degrees (14%) for Lens2.

Based on the above analysis, one may conclude that Lensl
provides the most suited observations for movement analysis,
as only consuming slightly more resources than Lens2 while
offering better accuracy. Surely, these considerations are rela-
tive to each application context.

Lensl-core
Trajectory:
-0,86x + 39,04

LensO-core
Trajectory:
-0,99x + 38,47

Fig. 4: Centroid plots &trajectory via LensO-core &Lens1-core

C. Group composition analysis

The following questions require finer-grain observations:

o how many live cells are there in a group? task-4: count
the Glider’s live cells;

« are the live cells moving within the group? task-5: dif-
ferentiate between Glider states;

As above, we estimate the efficacy and efficiency of the
three lenses for answering the two additional questions above.
The higher lenses (Lensl and Lens2) are not effective in this
case as the questions require cell-level precision; hence lens
efficiency does not apply here. Only LensO can provide the
required resolution in this case: the Glider contains 5 live cells,
which change position from one step the next (i.e., 4 states).

We now ask a question that only requires cell count esti-
mates per patch:

« have any live cells left the observed patch area? task-6:
estimate the number of live cells per patch

Lens0 can answer this question at every simulation step and
irrespective of the number of live cells leaving a patch. Lensl
and Lens2 can only answer it under certain conditions and
only at certain steps. E.g., in the example in Fig. 3, Lens1 can
only notice cells moving between patches at Step 2 and Step
3; and Lens2 only at Step 2. This is because these lenses only
provide cell count estimates — i.e., are the number of live cells
higher than a threshold? so they can only detect changes that
cross this threshold. We can conclude that Lensl and Lens2
are somewhat effective at answering task-6; with Lens1 being
slightly more effective than Lens2; and with equal efficiency.

510

S

(b) 6x6 patches (Lens6x6):
the Glider performs 1 diag-
onal patch transition during
36 steps (magenta arrow)

(a) 3x3 patches (Lens3x3):
the Glider performs 3 diag-
onal patch transitions during
36 steps (magenta arrows)

Fig. 5: CA grid of 12x12 cells, at different patch resolutions

IV. GLIDER EXAMPLE: ENTROPY-BASED LENSING
A. Entropy-oriented Lens

We now reconsider the Glider example from a different
perspective, in terms of Observer abilities. We assume that the
Observer can only perceive the Cellular Automata (CA) via a
lens with maximum resolution of 3x3 cell patches (Lens3x3)
— Cf. Patches 1 to 16 in Fig. 5a. The Observer also disposes
of a lens with lower resolution of 6x6 cell patches (Lens6x6)
— Cf. Patches A to D in Fig. 5b.

We also assume that the Observer can somehow estimate
the total number of live cells within each patch (e.g., the
patch color or weight varies with the number of live cells).
Still, the Observer cannot establish the exact organization of
the live cells (i.e., cannot differentiate among the four glider
states).This could be provided by a different kind of lens, not
related to the others by resolution differences, that simply
provides the number of live cells (the “live weight” of the
region).

B. Experimental Settings

We consider a CA grid of 144 cells (12x12), Fig. 5.
Depending on the lenses it employs, the Observer perceives a
different number of patches N within this grid. Namely, the
Observer sees N = 16 patches (4x4) when using Lens3x3;
and 4 patches (2x2) when using Lens6z6.

In all cases, we set the initial CA state with the Glider in
the upper-left grid corner, as shown in Step 1 of Fig. 2 (i.e.,
Patch 1 in Fig. 5a and upper-left of Patch A in Fig. 5b). As
in Fig. 2, the Glider takes 12 steps to move from one 3x3
patch to the next one diagonally down-right (i.e., from Patch
1 to 4). Considering our 12x12 cells grid, the Glider has to
move diagonally between patches for 3 times — i.e., through 4
patches, when using Lens3z3 (between patches 1-4, 4-9 and
9-16); and through 2 patches, when using Lens6z6 (between
patches A and D). Hence, in all cases, we run the Glider for
36 steps (3x12) to have it cross the entire grid.

C. Patch Entropy

At each step ¢, a patch 7 = 1..N contains a number of live
cells M; (with M; = 0..5 for the Glider case). M is the total

number of live cells in the CA (M = 5 at all ¢ for the Glider).
There are many different ways to compute entropy analogs,
and we have chosen a particularly simple one.

We calculate the entropy analog .S; of each patch ¢ as fol-
lows. The measure of occupancy of a patch is p; = (1/N)M:,
and the entropy analog is S; = —p; * loga2(p;). Based on this
formula, patches that contain the Glider will have low entropy
because they have more live cells, and those that only have
part of the Glider (i.e., few live cells) will have high entropy.
Fig. 6 lists the number of live cells per patch, the occupancy
measure for this and the associated entropy analog for Patches
1 and 4, via Lens3x3, during the first 13 steps.

Since the glider is a small part of a patch (less than half
for the 3x3 lens and much less for the 6x6 lens, the existence
of empty patches is very common. The occupancy measure is
1 by the formula above, so we take pempry = (1 — 1/N)M
instead.

Fig. 7 shows the patch entropy values when the Observer
uses the two lenses, over different time periods. The graphs
only show values for Patch 1 and 4, as these show the
starkest Glider transitions. Patches 2 and 3 also show some
disturbances as the Glider passes along their sides (not shown),
which could also be interpreted as some sort of movement.

More precisely, Fig. 7a shows the entropy S; (of Patch 4,
in blue) and entropy S; (of Patch 1, in orange), when the
Observer uses Lens3x3, over the first 13 simulation steps — the
Glider moves as shown in Fig. 2 during this time. From then on
(steps 13-36, not shown) the entropy of Patch 1 (orange) stays
unchanged (Sempty = -33), as the Glider moves further down.
The entropy of Patch 4 changes between steps 13-24 in the
same manner as shown in 7a for Patch 1 between steps 1-12
— i.e., changing from lowest to highest entropy as the Glider
leaves Patch 4 and goes to Patch 9. After that, the entropy
of Patch 4 (blue) remains constant Sy, for the rest of the
experiment (steps 25-36), as the Glider moves from Patch 9
to 16.

Similarly, Fig. 7a shows the entropy Sp (of Patch D, in
blue) and entropy S4 (of Patch A, in orange), when the

Patch1 |Patchd P_Patch1
0,000001
0,000015
0,000244
0,003906
0,062500
0,062500
0,724196]
0,062500
0,724196
0,724196]
0,724196
0.724196]
0,724196]

P_Patch4
0,724196
0,724196
0,724196]
0,724196
0.062500
0,062500
0.,003906
0.,000244
0.,000244
0.000015
0.000015
0000001
0000001

S_Patch1
0,000019]
0,000244
0,002930
0,031250
0.250000
0,250000
0,337147]
0,250000
0,337147]
0,337147]
0,337147]
0,337147]
0,337147]

S _Patchd
0,337147
0,337147
0,337147
0,337147
0,250000
0,250000
0,031250
0,002930
0,002930
0,000244
0,000244
0,000019
0.000019

Step

o= onfun| & |t pa)—a

]
10
11
12
13

= =1 =1 =] =] = =] = = L= 1 =]
[R50 5e] BN o L] o] [O] Y Py f e] =] L=] =]

Fig. 6: Entropy values via Lens3z3, showing: the simulation
Step (grey); Number of live cells for Patch1 & Patch4 (yellow);
occupancy measure P_Patchl & P_Patch4 for that number of
live cells to occur in Patchl & Patch4 (green); and the entropy
analog S_Patchl & S_Patch4 for Patchl & Patch4 (pink).

(a) Patch entropy values at higher patch resolution (Lens3z3);
Blue line corresponds to Patch 4; and Orange line to Patch 1.

0.6
0.5
0.4
0.3
0.2
0.1

o

1234586

72 910111213 1415181718 192021 222324252837 28 20 30 3132333435 38

(b) Patch entropy values at lower patch resolution (Lens6x6);
Blue line corresponds to Patch D; and Orange line to Patch A.

Fig. 7: Patch entropy via different lenses: values indicate group
location and value changes indicate group movement. Both
lenses can detect group location; yet Lens6z6 requires longer
time scope to detect group movement, compared to Lens3z3

Observer uses Lens6x6, over the entire 36 simulation steps.
We note that for the first 13 steps, entropy values stay constant,
as the Glider moves across Patch A. A transition is observed
between steps 14 and 24 as the Glider transits from Patch A
to D. After that, the entropy values stay constant again, as the
Gilder transits through Patch D (steps 25-36).

D. Group detection and Movement analysis

We aim to answer the same questions about the Glider’s
existence, position and movement, as in subsec. III-B.

The entropy values observed through Lens3x3 allows the
Observer to note that a group exists (low entropy values) and
to locate it at the patch level (in Patch 1 during steps 1-4 and
in Patch 4 during steps 7-13) — (task-1). The Observer can
also note that the group is moving (task-2), as the entropy
values change in waves, from one patch to another, during
every 12 steps. Finally, the Observer can detect the group’s
trajectory (task-3), by noting that the group moves diagonally-
down every 12 steps (Patch 1-4 during steps 1-12; Patch 4-9
during steps 13-24; and Patch 9-16 during steps 24-36). Hence,
Lens3z3 is effective for all three tasks.

When using Lens6x6, the Observer can also notice the
existence of a group (task-1) — e.g., low entropy values for
Patch A, during steps 1-15; and for Patch D during steps 20-36.
However, the Observer cannot detect the group’s movement
(task-2) if only observing the CA during steps 1-13, or
during steps 24-36. The Observer can only be sure to detect

movement when observing the CA at longer time scales (via
higher-level time lenses)— e.g., 36 steps as shown in Fig. 7b.
Hence, Lens6z6 is effective for detecting movement (task-
2) if also featuring larger time-scales (not only coarse-grain
6x6 patches). Finally, if observing for sufficiently large time
scales to detect group movement, Lens6x6 can also determine
its diagonal trajectory (e.g., patch A to D) - (task-3).

Neither lens can accurately answer the group composition
questions, as they cannot see the group’s individual cells (task-
4 and 5). However, they can notice when live cells leave an
observed patch, via the entropy changes of that patch. hence,
they can answer estimate questions about group composition
(task-6). Surely, each lens can only answer this question at its
own patch resolution.

In summary, both Lens3x3 and Lens6z6 can be effective
in answering the group-detection and movement questions,
if observing the CA at sufficiently coarse-grain time scales.
Conversely, they are ineffective in answering precise questions
on group composition (subsec. III-C), as they cannot see a
group’s individual live cells. Yet, they can answer these ques-
tions approximately. In terms of efficiency, Lens3z3 requires
more resources than Lens6z6 to detect group movement (i.e.,
having to observe 16 patches rather than 4). At the same time,
it requires shorter observation periods than Lens6xz6 (i.e., 13
steps rather than 36). The best lens here will depend on the
Observer’s constraints and precision requirements.

V. CONCLUSION

This position paper aimed to set the stage for a long-
term research initiative on CAS lensing. The objective is
to enable self-aware CAS to determine suitable abstraction
levels for observing themselves and other systems, and hence
for answering questions or problems as they occur during
runtime. Beyond proposing the lensing concept, the paper also
introduced associated evaluation notions of lens effectiveness
and efficiency, which will be critical to the self-adaptive lens-
selection process. These concepts were illustrated via several
examples from collective movement systems, concretely fo-
cusing on a Game of Life (GoL) Glider simulation.

Immediate efforts will focus on analyzing further examples
where lensing is critical, and proposing a formal methodology
for lens selection at runtime — e.g., based on repeated lens
acquisition and evaluation cycles. Longer-term efforts will aim
to study cases where lenses can be generated automatically, to
suit unexpected self-adaptions or to allow for self-integration
with other systems, discovered at runtime.

REFERENCES
[1]
[2]

[3]
[4]

[5]

J. H. Holland, Hidden Order: How Adaptation Builds Complexity.
Addison-Wesley, 1995.

H. A. Simon, The Architecture of Complexity. Boston, MA: Springer
US, 1991, pp. 457-476.

V. Ahl and T. Allen, Hierarchy Theory. Columbia Univ. Press, 1996.
P. Benjamin et al., “Simulation modeling at multiple levels of abstrac-
tion.” 01 1998, pp. 391-398.

M. Gardner, “The fantastic combinations of john conway’s new solitaire
game “life”,” Scientific American, Mathematical Games, 10 1970.

S. N. Salthe, Evolving Hierarchical Systems: Their Structure and Rep-
resentation. Columbia University Press, 1985.

[6]

[7]
[8]

[9]

[10]

J. H. Holland, Signals and Boundaries: Building Blocks for Complex
Adaptive Systems. MIT Press, 2012.

A. Diaconescu, L. Di Felice, and P. Mellodge, “Exogenous coordination
in multi-scale systems: How information flows and timing affect system
properties,” Future Gen. Comp. Sys., vol. 114, pp. 403-426, 2021.

A. Diaconescu, L. J. Di Felice, and P. Mellodge, “Multi-scale feedbacks
for large-scale coordination in self-systems,” in IEEE Intl. Conf. Self-
Adaptive and Self-Organizing Systems (SASO), 2019, pp. 137-142.

A. Diaconescu, L. Di Felice, and P. Mellodge, “An information-oriented
view of multi-scale systems,” 09 2021, pp. 154-159.

(11]

[12]
[13]

[14]

J. Flack, “Coarse-graining as a downward causation mechanism,” Philo-
sophical Transactions of The Royal Society A Mathematical Physical
and Engineering Sciences, vol. 375, p. 20160338, 12 2017.

C. Rovelli, The Order of Time. Penguin Publishing Group, 2018.

R. Franceschini et al, “Challenges for automation in adaptive ab-
straction,” in ACM/IEEE Intl. Cnf. MODELS, Companion, Companion,
L. Burgueiio and et.al, Eds., 2019, pp. 443—448.

Y. Iwasaki, “Reasoning with multipl e abstraction models,” in In
Faltings, B . and Struss, P . eds . : Recent Advances in Qualitative
Physics, Cambridge , Mass. MIT Press, 1992.

