
A Data-driven Approach for
Modeling Unknown Multi-scale Systems

Marius Pol
Independent researcher

Paris, France
mariuspol@messagebox.email

Ada Diaconescu
LCTI Lab, Télécom Paris, IP Paris,

Palaiseau, France
ada.diaconescu@telecom-paris.fr

Abstract—Complex adaptive systems often organize via mul-
tiple abstraction levels, or ‘scales’, interconnected by feedback
loops. This enables adaptation and survival in changing envi-
ronments, while managing complexity with limited resources.
For an external observer unaware of such multi-scale structure,
modeling an unknown system may be a complicated endeavor.
This position paper proposes a data-driven approach for address-
ing this issue. It generates multi-scale models from incomplete
monitoring data, capitalizing on the behavioral regularities that
stem from its feedback loops. It also defines the appropriate
language elements for expressing these multi-scale models. We
validate our approach on data obtained from a theoretical
multi-scale system: a holonic cellular automata (HCA) simulator.
Results show that the proposed approach can identify the HCA’s
three abstraction levels and main modeling concepts. This is an
encouraging first step towards establishing automatic methods
for multi-scale model discovery from partial observations.

Index Terms—knowledge abstraction, multi-scale feedbacks,
dynamic meta-models, data-driven modeling

I. INTRODUCTION

Complex systems consist of multiple interacting parts whose
collective behavior (higher-level) is difficult to predict based
on individual behavior (lower-level). To adapt to changing
environments with limited computational resources, these sys-
tems organize via multiple abstraction levels, or ‘scales’ [1],
interrelated by feedbacks [2]. E.g. individual trees form forest
patches (bottom-up abstraction), which in turn impact further
tree growth (top-down feedback). Feedback controllers gen-
erally stabilize the dynamics of managed systems [3]. Hence,
complex systems organized via multi-scale feedback structures
often feature relatively stable high-level behaviors based on
more variable low-level dynamics [4]. When modeling such
systems, an external observer must select the appropriate
scale(s) for their purposes, considering that: coarse-grained
models omit details, while detailed models require significant
computational power [5]. When the observer is unaware of
the system’s multi-scale structure, determining the suitable
modeling granularity and the key associated concepts (meta-
model) represents a considerable challenge.

This position paper proposes a data-driven multi-scale
modeling approach to alleviate this issue. It produces multi-
scale models from partial monitoring data, capitalizing on the
system’s behavioral regularities that occur at increasing scales,
due to inter-scale feedbacks. Each upper scale is identified
as stable behavior based on the lower scale; the lowest scale

State
xN

Output yN

Dynamics state
modeling
(DMDc)

Delay embedding
...

Conceptual
spaces

representation

a

1

2

Dynamics reconstruction

Mode decomposition
(DMD)

Abstraction
(POD)

b

c

Modeling
language

generation

N+1
N+2
...

O2

O1

N

N+i

... ...

Fig. 1. Overview of proposed approach for multi-scale modeling.

consists of direct observations. At each scale, we propose to
identify key modeling concepts and the associated language
(meta-model) at runtime; rather than rely on predefined meta-
models, as in ‘classic’ solutions [6]. We do this by identifying
similar reoccurring system states, at each scale, and labeling
them as meta-model concepts, at the respective scales.

Moreover, we propose to infer automatically the system’s
dynamic state models (i.e. state-transition equations), at each
scale. For this purpose, we assume that systems are structured
following the Multi-Scale Abstraction Feedbacks (MSAF) de-
sign pattern [2], [7]. Here, multiple scales affect each other by
feedback. The predicted system state xN (k+1), at scale N and
time k+1 is computed by merging: i) the system state xN (k);
and ii) the feedback control information from the upper level
N +1, which we consider to be the abstracted state xN+1(k).

In previous work [8], [9], we proposed a cognitive approach
for self-integrating and -improving systems (SISSY) [10], to
learn new language elements at runtime, and reason about
unknown situations. The approach contains a play module that
acquires new knowledge during inactivity periods, so as to
improve its reasoning when adapting to new situations. The
current proposal extends the learning capabilities of the play
module by modeling systems on successive scales, and aims
to increase the self-awareness of SISSY systems.

Fig. 1 depicts an overview of our approach. The observa-
tion level N is considered the lowest one (i.e. that can be
monitored). Monitoring data is given by output yN , which
we assume does not include the full state xN . To recover



the system’s main states and dynamics from incomplete mea-
sures, we employ a dynamic reconstruction method: Hankel
Dynamic Mode Decomposition (Hankel-DMD) [11] – block
(a) in the figure. This involves applying a ‘classic’ Dynamic
Mode Decomposition (DMD) method [12] onto the time-
delay embedded version of the system’s partial monitoring
data (input). We then represent the obtained system states
into conceptual spaces [13] and cluster them (i.e. based on
a distance threshold) to obtain key modeling concepts, or
meta-types – block (b). These concepts are labeled to extend
the meta-modeling language – output (O1). We then apply
Proper Orthogonal Decomposition (POD) [14] to reduce the
dimensionality of conceptual spaces and discover higher-level
states xN+1 – block (c). Finally, to obtain the dynamic
state model at N – output (O2) – we apply Dynamic Mode
Decomposition with Control (DMDc) [15] on states xN and
control states xN+1.

This process can be repeated recursively, obtaining meta-
models (O1) and dynamic state models (O2) at increasingly
higher scales. We note that monitoring data is only considered
as input at the lowest scale N . Hence, we only need to employ
the dynamic state reconstruction (block a) at this scale N .
After this, we infer the abstracted states at N + 1 and use
them as input for inferring states at the higher scales.

Generally, we represent the states xN+i, i > 0 (obtained
via abstraction (c)) into corresponding conceptual spaces. We
can then infer the associated modeling concepts (via clustering
(b)) and extend the meta-model for scale N + i (O1). These
are again abstracted into states xN+i+1, via (c); and again fed
back into conceptual spaces to obtain concepts at N + i+ 1.
Additionally, states xN+i and upper control states xN+i+1 are
fed into DMDc to obtain the dynamic model at N + i (O2).

The paper’s main contribution is to propose a data-driven
approach for dynamic multi-scale modeling from incomplete
monitoring data. The approach consists of a sequence of data
analysis methods, from the literature, applied recursively to
model increasingly higher scales. The process stops when the
abstraction process (c) no longer obtains a model reduction.

We validate our approach via a dataset generated by a
theoretical multi-scale system: a Holonic Cellular Automata
(HCA) simulator [16]. Given incomplete monitoring data (low-
est scale), our approach generates language elements and de-
termines the dynamic state model parameters that correspond
to the observed behavior in the three HCA scales. In future
work, we aim to study data from real-world systems with the
proposed approach.

II. SYSTEM ASSUMPTIONS AND PROBLEM STATEMENT

We assume that targeted complex systems fit the following
dynamic state equation, at scale N and time k: xN (k + 1) =
f(xN (k)), k ∈ N, where xN (k) ∈ RM is the system state, and
f : RM 7→ RM , its nonlinear dynamics. The system equation
is obtained by collecting K discrete samples of the state xN (k)
with a rate ∆t, i.e. xN (k) = xN (k∆t), where k ∈ N. The
measured output is provided by a function gN : RM 7→ RP

yN (k) = gN (xN (k)) (1)

where yN ∈ RP . We assume incomplete measurement, with
gN a dimension-reducing function, i.e. P < M .

Given the output measurements, our method represents the
system’s stable repetitive behavior at level N as a linear state
space model:

xN (k + 1) = ANxN (k) +BNuN (k) (2)

where uN (k) is the control information at scale N , coming
from scale N + 1, with: uN (k) = xN+1(k − 1).

To generate multi-scale models, our method determines an
abstraction transformation TN for projecting the system state
at scale N onto the upper scale N + 1:

xN+1(k) = TN (xN (k)) (3)

To generate the system’s modeling language (O1 in Fig. 1)
we must specify its syntax and semantics [17]. The syntax is
a set of logic symbols L. A semantic mapping M provides
meaning to syntax elements by relating logic symbols to
knowledge representations: M : L → C. Hence, to model
the system at scale N the problem (P1) is to determine the
elements in C to represent the states xN , and the corresponding
logic symbols in L. Furthermore, to generate the system’s
dynamic state model at scale N the problem (P2) is to
determine the values of parameters AN and BN in eq. 2.

III. PROPOSED APPROACH

This section presents our data-driven method for multi-scale
modeling, including language and dynamic model generation
at successive scales. The method starts with a dynamics
reconstruction step (III-A), which is only required for the
observation scale N . Then it determines a subspace for repre-
senting states at scale N + 1 (III-B). Once the state at upper
scale N + 1 is available, it can be used to determine the
dynamic model parameters at N (III-C) – addressing (P2).
State representation in conceptual spaces allows obtaining
the meta-model types for the modeling language (III-D) –
addressing (P1). By reapplying the method at the next scale
N + 1, further abstraction levels may be generated.

A. Time-Delay Embedding for Dynamics Reconstruction

We reconstruct the dynamics of the observation level N
via the Hankel-DMD method [11], involving two steps: 1)
determine a system with the same dynamics as the origi-
nal, based only on incomplete monitoring data, via a time-
delay embedding method [18]; 2) generate the system’s stable
behavior by computing an optimal basis (i.e. DMD modal
decomposition [12]), then compute a state reconstruction based
on selected modes (cf. below).

When studying complex systems, we may not have direct
access to their entire states, but only to partial measurements
via gN (cf. eq. 1). To reconstruct the state xN based only on
yN , time-delay embedding methods have been proposed for



complex nonlinear systems [18]. Delay embedding processes
stacked time-shifted versions of yN , to determine a system
equivalent to the original, i.e., for our purposes, it has the
same dynamics.

Dynamic Mode Decomposition (DMD) is a data-driven
model reduction method for nonlinear systems [12]. DMD
extracts an optimal basis from observations, to generate a
subspace for a reduced-order representation of a system’s dy-
namics [19]. As system states in multi-scale feedback systems
may repeat at different frequencies, or timescales [20], the
fact that DMD determines the modes by regrouping distinct
frequencies [12] makes it suitable for our approach: modeling
the system’s stable behavior at the observation level N . The
DMD decomposition assumes that full-state measurements are
available (i.e. gN is an identity function, gN (k) = k).

In the first step of Hankel-DMD, the augmented matrix,
delayed with a parameter d, and based on K monitoring
samples yN (k), is:

Y d
N (K) =


yN (1) yN (2) ... yN (K − d)
yN (2) yN (3) ... yN (K − d+ 1)

...
yN (d) yN (d+ 1) ... yN (K)

 (4)

The system’s stable behavior is obtained by modal decom-
position of the delayed matrix Y d

N . The DMD modes are com-
puted supposing the system described by Y d

N evolves under a
linear operator AYN

: Y d
N (k+1) = AYN

Y d
N (k) [21]. The matrix

AYN
is determined as AYN

= Y d
N (k+1)Y d

N (k)†, where † is the
pseudoinverse – computable for any matrix via Singular Value
Decomposition (SVD) (cf. III-B). The dynamics of the delayed
matrix are equivalent to the original dynamics, and the state
xN may be reconstructed as a weighted sum of eigenvectors
of AYN

. To select the stable behavior, the weighted sum takes
into account only eigenvalues on the unit circle [22].

B. Proper Orthogonal Decomposition for State Abstraction
We determine the next abstraction level N + 1 by project-

ing the system state at level N onto a lower dimensional
subspace. To determine a basis for this subspace, we use
Proper Orthogonal Decomposition (POD), a classic model
order reduction method [14]. POD computes an optimal basis
for projecting data into a lower order subspace. POD modes
may be computed with Singular Value Decomposition (SVD)
[23]. SVD decomposes any matrix into the following matrix
product:

xN (k + 1) = UNΣNV T
N (5)

with UN and VN orthogonal matrices (UT
NUN = IM×M ,

V T
N VN = IK×K), and ΣN = diag(σ1, σ2, ..., σr), where

T denotes the transpose, σi are the singular values, and r
the dimension of the lower dimensional subspace. The POD
modes are given by the columns of the UN matrix [23]. We
consider the abstraction transformation TN in equation 3 equal
to UT

N , and obtain the state on the next level of abstraction as
xN+1(k) = ΣNV T

N .

Collective state
abstraction Collective control

State 1 State 2 State M...

Abstraction
Control

Level N

Level N+1

Control
N+2

Abstraction
N+2

Fig. 2. State abstraction in the MSAF design pattern. States on level N
abstract into a collective state on level N+1. The collective state is processed
to determine the collective control information on level N +1, which is used
to control states on level N .

C. Dynamic State Model Discovery via MSAF Design Pattern

In the MSAF design pattern the states at level N are
abstracted into a collective state at level N + 1 [7]. Infor-
mation processing at N + 1 further computes the collective
control, which is transmitted back to level N , leading to state
adaptation (figure 2). Each entity at level N merges control
information from N + 1 with its current state information,
so as to produce its next state. The state information at level
N + i, i > 0, is computed as an abstraction of the states of
individual entities at the level below N − 1.

Determining the system’s dynamic state model at level N
implies computing parameters AN and BN in eq. (2). We
follow the MSAF pattern here by considering the control
information at level N as the abstracted state computed at
level N + 1, i.e. in the state equation we have uN (k) =
xN+1(k). Given the current and control states at N , the model
parameters AN and BN may be determined with a DMD
variant, Dynamic Mode Decomposition with control (DMDc)
[15]. DMDc computes the dynamics of linear systems by
rearranging the equation 2 in the matrix form as:

xN (k + 1) = [ANBN ]

[
xN (k)
uN (k)

]
(6)

Similar to DMD, DMDc computes an approximation for the
row matrix above, which now contains both AN and BN , by
multiplying the left side with the pseudoinverse of the column
matrix in 6, which includes both the state and the input.

D. Knowledge Representation in Conceptual Spaces

To generate the language elements for modeling system
states at level N , we represent the states in equation 2 into
conceptual spaces [13]– a cognitive knowledge representation
framework where data is represented as vectors in geometrical
spaces. These vectors denote the centroids of concepts, i.e.
convex regions regrouping similar observations. Conceptual
spaces are built on domains, which are defined over one or
several dimensions relevant for high-level goals. Our proposal
generates, as successive levels of abstraction, concepts mod-
eling the behavior to achieve these goals, assumed unknown.

In this multi-dimensional geometric space, a distance mea-
sure may be defined to provide a similarity measure between
state observations. Here, we consider the euclidean metric as a



Past observations

Centroid

New observation

Distance function

Fig. 3. Conceptual spaces representation. Similar past observations are
aggregated into a single concept given by the centroid of the region enclosing
them. Concept membership for new observations is computed as a similarity
measure, given by their distance to the centroid.

distance function though other metrics may also be used [13].
Based on the similarity measure, we classify new observations
via a function that assigns a degree of membership to existing
concepts c ∈ C [24]. The function takes values in the interval
[0, 1]. A state observation is classified into a concept for which
the degree of membership is greater than a threshold Thdm.

Classifying new observations, when the set of known con-
cepts C is not empty, is shown in figure 3. The black dot is
the centroid of a concept c generated by past observations
(gray dots). Concept membership is given by the degree of
membership of the new observation (white dot) to the centroid
being greater than Thdm. When a new observation cannot be
classified into a known concept, a new concept is created and
added to the set C.

Our method adds conceptual representations to C, and then,
via a static labeling function, generates unique symbols for
these concepts. Symbols are added to L as new language
elements. The correspondence between concepts and symbols
provides the semantic mapping M. In the conceptual spaces,
any observation close enough to the centroid of a concept
c ∈ C is classified as c.

IV. EXPERIMENTS AND RESULTS

We apply the proposed approach for automatically modeling
a Holonic Cellular Automata (HCA) [16] with three scales.

A. Experimental Setup

The HCA simulator exemplifies a theoretical multi-scale
feedback system, with three abstraction levels. The bottom
level 0 contains 32 CAs (CA0,i, i = 0...31 in the simulation);
the middle level contains one CA1 (with 32 cells); and the top
level one CA2 (with one cell) – fig. 4. Each CA consists of
a grid of cells, each with two possible states: Alive or Dead
(e.g. CA1 in fig. 5-Left). Cell states change at each step as
dictated by a set of active rules. Each CA holds two sets of
rules (cf. [16]), one of which is activated via a control state.
The active rule of the top CA2 is constant and switches its cell
state at each cycle. Each of the 32 CA0,i is mapped to one of
the 32 cells in CA1; the entire CA1 is mapped to the one cell
of CA2. This cross-level mapping means that the entire state
of a CA0,i is abstracted into the state of a cell in CA1; and,
the state of each CA1 cell sets the active rules for a CA0,i.
The same holds between CA1 and CA2.

Bottom-up state abstraction is defined as: if the number of
Alive cells at CA0,i exceeds a threshold Th0, the state of

Abstraction
Control

...

CA1

CA2

...

CA0,0 CA0,1 CA0,9 CA0,30 CA0,31

Fig. 4. HCA simulator with three abstraction levels

the mapped cell in CA1 is Alive; otherwise it is Dead. The
same applies for abstracting the CA1 state into CA2’s cell
state, using a threshold Th1. At each simulation cycle, all CAs
at each level: execute their active rule; send their abstracted
state upwards; receive the control state from above. The delay
between the execution cycles of the three levels is given by
their activation frequencies (Fq0, Fq1, Fq2).

The results presented here are for a dataset (available
online1) generated by the HCA with the following parame-
ters: thresholds Th0=0.1 and Th1=0.7; activation frequencies
Fq0=1, Fq1=1 and Fq2=3; each CA0, i has 21x21=441 cells.

B. Results in the HCA Simulator

We implemented the proposed method (cf. III) in Python.
We provided 32 measurements as input: the number of live
cells of each CA0,i, i = 0..31 – obtained via a monitoring
function g0 (eq. 1). The 32 dimensions corresponding to
measurements of g0 are denoted as L0D00 to L0D31. We
validate our approach by modeling the states of CAs at all
three levels, based on g0, and comparing the results with the
ones available in the HCA simulation dataset.

The simulated behavior of CA1, once stabilized, cycles (6
steps) through 2 distinct states (figure 5). We refer to these
as Core (12 center cells) and Cross (12 center cells plus 16
border cells). The behavior at CA0,i stabilizes into cycles (6
steps) of 4 states (IDs=4..7). CA2 cycles through 2 states
(in 6 steps). Next, we compare these simulated behaviors
(expected) with the ones obtained via our method (modeled).
Monitoring data obtained via g0 contains K=170 samples,
each of P=32 measurements, forming a dataset of 32 rows
by 170 columns. To determine the stable modes at this level
0, we use an existing Hankel-DMD implementation: PyDMD
[25]2. The delay parameter is d = 2K/P [22] (to compute
more accurately in future work [26]).

To reconstruct the state on level 0, we use the ‘first’
method available for Hankel-DMD in PyDMD. This returns an
approximation of the Y d

0 (k) matrix where only stable modes
have been selected. The ‘first’ method corresponds to the first
version of the state in the delayed matrix (as in [27]). The
reconstruction at level 0 identifies 4 states (i.e. 4 value groups
(86.70), (52.18, 62.22), (41.97), (113.35)), which correspond
to the 4 expected states from the HCA simulator (respectively,

1https://github.com/adadiaconescu/hca/wiki, last access July 2023
2https://github.com/mathLab/PyDMD, last access July 2023

https://github.com/adadiaconescu/hca/wiki
https://github.com/mathLab/PyDMD


TABLE I
RESULTS IN THE HCA SIMULATOR ON LEVEL 0

Time step 1 2 3 4 5 6

Expected State Type 6 5 4 5 6 7
Live Cells 85 61 41 61 85 113

Generated L0D01 86.70 52.18 41.97 62.22 86.31 113.35

with 85, 61, 41, 113 live cells) – as in Table I. The table
presents the results for 6 time steps (1 cycle), with the 4
detected states that repeat at each cycle (Type IDs: 4,5,6,7).
The expected state types and live cells counts are available in
the simulator dataset. The results shown are for CA0,1 , which
is mapped to a border cell in CA1 (i.e. the second cell in the
first row in Fig. 4 and 5).

Once we detected the stable system states, we can represent
them within conceptual spaces. The dimension of recon-
structed states is smaller than that of the measured states,
which should also be smaller than the original [18]. At
HCA level 0 we have an original state of 441 cells and
a measurement dimension of P=32. The dimension for the
reconstructed state for level 0 is R=32, just as the one of the
measurement state P = 32. Since generally R < P < M , we
consider R as a sufficient dimension reduction of the original
state (M = 441), and generate the conceptual space based on
the reconstructed state.

For knowledge representation in the proposed approach, we
rely on an existing implementation of the conceptual spaces
framework [24] 3. We consider all available dimensions to
construct conceptual spaces for unknown high-level goals.
Clustering relevant dimensions that generate spaces for difer-
ent high-level goals is subject of future work.

The proposed method generates concepts for the values
of the reconstructed state on dimensions L0D00 to L0D31.
To generate a concept, we compute the starting and ending
values of the region on the associated dimension by setting
a threshold Thgen relative to the state value of the concept
to be represented. For the value of the state on dimension
m, x0,m(k), the boundary of the segment is [x0,m(k) * (1 -
Thgen), x0,m(k) * (1 + Thgen)]. The value of Thgen deter-
mines the concept resolution, hence influencing the number
of generated concepts. When generating concepts, our method
determines if states observations belong to known concepts
by comparing the value of the degree membership function
to the threshold Thdm=0.9 for known concepts. Observations
falling into regions denoting existent concepts are represented
as these concepts. New observations on a dimension generate
concepts based on Thgen.

The expected states of CA1 in the simulator are shown in
figure 5, left: Cross state (a) and Core state (b). Our approach
generates two corresponding multi-dimensional concepts, rep-
resenting the states of CA0,i that are mapped to cell states
in CA1 – figure 5, right. Here, each cell corresponds to
a cell in CA1 mapped to a CA0,i; and each value is the
centroid of the generated concept. On the dimension L0D01

3https://github.com/lbechberger/ConceptualSpaces, last access July 2023

0.00 113.35 113.35 113.35 113.35 113.35 113.35 0.00
113.35 437.76 437.76 437.76 437.76 437.76 437.76 113.35
113.35 437.76 437.76 437.76 437.76 437.76 437.76 113.35
0.00 113.35 113.35 113.35 113.35 113.35 113.35 0.00

0.00 52.18 52.18 52.18 52.18 52.18 52.18 0.00
52.18 437.76 437.76 437.76 437.76 437.76 437.76 52.18
52.18 437.76 437.76 437.76 437.76 437.76 437.76 52.18
0.00 52.18 52.18 52.18 52.18 52.18 52.18 0.00

a) Cross

b) Core

Fig. 5. Expected and generated Cross and Core patterns (live cells are
in blue). Left: expected states of CA1, based on simulation results . Right:
generated concepts to represent the CAs on level 0.

TABLE II
RESULTS ON LEVEL 1 IN THE HCA SIMULATOR.

Time step 1 2 3 4 5 6
Expected L1 Cross Cross Core Core Core Cross

Generated L1D0 -1,575 -1,575 -1,523 -1,523 -1,523 -1,575
L1D1 -115 -115 122 122 122 -115

(the second cell in the first row), the approach generates a
concept with centroid at 113.35 (which we label “Alive”) and
another concept with centroid at 52.18 (labeled “Dead”). These
two concepts correspond to the live and dead states observed
in the simulation for the mapped cells at CA1, respectively.
Similar concepts are generated for every dimension (L0D00
to L0D31), using Thgen=0.3. Concepts are only generated
based on data monitored after system stabilization (i.e. cyclical
behavior); data from the start of the simulation is excluded.

To generate the state at level 1, we project the state at level 0
onto a subspace obtained via SVD decomposition, available in
PyDMD [25]. The SVD operation is used with an optimal rank
truncation, keeping only the most important modes associated
to the singular values determined by the decomposition.

The results obtained at level 1 are shown in table II. The
projection from the space at level 0 to the space at level 1
results in a reduction of space dimensions from 32 to 2. The
generated values on these two dimensions at level 1 correspond
to the Cross and Core patterns observed in the simulator. The
table contains only the integer part of the obtained values. We
note that the values obtained on the two dimensions allow to
differentiate two states at level 1 – e.g. value pairs (-1575;-
115) and (-1523;122) correspond to the Cross and Core states,
respectively. The two concepts are added to the knowledge set
C and labeled as {Cross, Core}. These two labels designate
the language elements which are added to L. The semantic
mapping M is updated with the correspondence between the
new concepts and their associated language elements.

Finally, we determine the parameters of the dynamic state
equation for level 0 – A0 and B0 – with DMDc (also available
in PyDMD). We can now predict the state at level 0 as in
equation 2. We similarly determine parameters A1, B1 for
level 1. We note that B1 an inverted identity matrix, which
does indeed model the expected control behavior from level
2, based on a state inversion rule.

https://github.com/lbechberger/ConceptualSpaces


V. RELATED WORK

Traditional modeling approaches focus on specific scales of
interest. To solve the difficulties of determining these scales
multi-scale modeling methods have been proposed [5]. Our
proposal here is to determine automatically all modeling scales
that may be of interest to an external observer.

For determining the scales of interest, a possible approach
is to separate fast and slow time scales (e.g. [28]). This differs
from our proposal in that we propose to identify multiple time
scales, associated to the DMD modes which regroup distinct
frequencies (Cf. III-A). In the Complex Automata Model [29],
the levels of abstraction are determined based on a scale
separation map on two dimensions, space and time. The scale
separation map determines the different levels of abstraction
and interactions between them. However, this is expressed in
a fixed modeling language.

Complex systems modeling methods focus on representing
their composing parts and the relationships between them. The
representations for modeling developed, for example, from
elementary cellular automata [30], to networks modeled as
graphs [31], by generalizing the relationship type. Hypergraphs
[32] generalize graphs by supporting multiple relationships
between parts, and are closer to the knowledge representation
framework of conceptual spaces in out proposal.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a data-driven approach for automatically
generating multi-scale models for complex adaptive systems,
based on incomplete monitoring data. This includes both: i)
defining the multi-scale modeling language (meta-models);
and ii) determining the model state dynamics at each scale.
Our method involves several data-processing techniques from
the literature, notably: Hankel-DMD for recovering system
state from incomplete monitoring data; conceptual space repre-
sentations for concept identification and language generation;
POD for state abstractions and new scale identification; and
DMDc for dynamic state modeling. We validated the proposed
approach via a holonic CA simulator with three scales. Results
showed that our method managed to generate models at the
three different scales and that these models corresponded to
the states and dynamics observed in the simulation. This is an
encouraging first step towards automatic methods for multi-
scale model discovery from system observations. In future
work we will apply the proposed method to more realistic case
studies; and see how automatic reasoning can be performed
on generated knowledge.

REFERENCES

[1] H. A. Simon, “The Architecture of Complexity,” Proc. Am. Philos. Soc.,
vol. 106, no. 6, pp. 467–482, 1962.

[2] A. Diaconescu, L. J. Di Felice, and P. Mellodge, “Multi-Scale Feedbacks
for Large-Scale Coordination in Self-Systems,” in IEEE Int. Cnf. Self-
Adapt. Self-Organ. Syst. SASO, Umea, Jun. 2019, pp. 137–142.

[3] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control:
Analysis and Design, 2nd ed. Hoboken, NJ: John Wiley, 2005.

[4] J. Flack, D. Erwin, T. Elliot, and D. Krakauer, “Timescales, symmetry,
and uncertainty reduction in the origins of hierarchy in biological
systems,” Evolution, cooperation and complexity, pp. 45–74, 2013.

[5] E. Weinan, Principles of Multiscale Modeling. Cambridge ; New York:
Cambridge University Press, 2011.

[6] G. Lehmann, M. Blumendorf, F. Trollmann, and S. Albayrak, “Meta-
modeling Runtime Models,” in Models in Software Engineering, J. Din-
gel and A. Solberg, Eds. Springer, 2011, vol. 6627, pp. 209–223.

[7] A. Diaconescu, L. Di Felice, and P. Mellodge, “Exogenous coordination
in multi-scale systems: How information flows and timing affect system
properties,” FGCS, vol. 114, pp. 403–426, 2021.

[8] M. Pol and A. Diaconescu, “A Cognitive Control System for Managing
Runtime Uncertainty in Self-Integrating Autonomic Systems,” in IEEE
Intl. Cnf. ACSOS, 2020, p. 6.

[9] ——, “Multi - Level Online Learning and Reasoning for Self-Integrating
Systems,” in 2021 IEEE Int. Conf. Auton. Comput. Self-Organ. Syst.
Companion ACSOS-C. DC, USA: IEEE, Sep. 2021, pp. 187–192.

[10] K. Bellman, J. Botev, A. Diaconescu, L. Esterle, C. Gruhl, C. Landauer,
P. R. Lewis, P. R. Nelson, E. Pournaras, A. Stein, and S. Tomforde, “Self-
improving system integration: Mastering continuous change,” Future
Generation Computer Systems, vol. 117, pp. 29–46, Apr. 2021.

[11] H. Arbabi and I. Mezić, “Ergodic theory, Dynamic Mode Decomposition
and Computation of Spectral Properties of the Koopman operator,” SIAM
J. Appl. Dyn. Syst., vol. 16, no. 4, pp. 2096–2126, Jan. 2017.

[12] P. J. Schmid, “Dynamic mode decomposition of numerical and experi-
mental data,” J. Fluid Mech., vol. 656, pp. 5–28, Aug. 2010.

[13] P. Gärdenfors, Conceptual Spaces: The Geometry of Thought, 2000.
[14] R. Pinnau, “Model Reduction via Proper Orthogonal Decomposition,”

in Model Order Reduction: Theory, Research Aspects and Applications.
Springer Berlin Heidelberg, 2008, vol. 13, pp. 95–109.

[15] J. L. Proctor, S. L. Brunton, and J. N. Kutz, “Dynamic mode decompo-
sition with control,” Sep. 2014.

[16] A. Diaconescu, S. Tomforde, and C. Müller-Schloer, “Holonic Cellular
Automata: Modelling Multi-level Self-organisation of Structure and
Behaviour,” in Artif. Life. Tokyo, Japan: MIT Press, 2018, pp. 186–193.

[17] D. Harel and B. Rumpe, “Modeling Languages: Syntax, Semantics and
All That Stuff Part I,” URL Httpwww Ncstrl Org, 2000.

[18] M. Casdagli, S. Eubank, J. Farmer, and J. Gibson, “State space recon-
struction in the presence of noise,” Physica D: Nonlinear Phenomena,
vol. 51, no. 1-3, pp. 52–98, Aug. 1991.

[19] G. Tissot, L. Cordier, N. Benard, and B. R. Noack, “Model reduction
using Dynamic Mode Decomposition,” Comptes Rendus Mécanique, vol.
342, no. 6-7, pp. 410–416, Jun. 2014.

[20] P. Mellodge, A. Diaconescu, and L. Di Felice, “Timing configurations
affect the macro-properties of multi-scale feedback systems,” in IEEE
Intl. Cnf. ACSOS, 2021, pp. 100–109.

[21] J. N. Kutz, S. L. Brunton, B. W. Brunton, and J. L. Proctor, Dynamic
Mode Decomposition: Data-Driven Modeling of Complex Systems. Soc.
for Industrial and Applied Mathematics, Nov. 2016.

[22] B. W. Brunton, L. A. Johnson, J. G. Ojemann, and J. N. Kutz, “Extract-
ing spatial-temporal coherent patterns in large-scale neural recordings
using ddm,” J. Neuroscience Methods, vol. 258, pp. 1–15, 2016.

[23] P. Holmes and P. Holmes, Eds., Turbulence, Coherent Structures, Dy-
namical Systems and Symmetry, 2012.

[24] L. Bechberger and K.-U. Kuhnberger, “A Comprehensive Implementa-
tion of Conceptual Spaces,” ArXiv Prepr. ArXiv170705165, p. 14, 2017.

[25] N. Demo, M. Tezzele, and G. Rozza, “PyDMD: Python Dynamic Mode
Decomposition,” JOSS, vol. 3, no. 22, p. 530, Feb. 2018.

[26] E. Tan, S. Algar, D. Corrêa, M. Small, T. Stemler, and D. Walker,
“Selecting embedding delays: An overview of embedding techniques
and a new method using persistent homology,” Chaos, p. 032101, 2023.

[27] D. Dylewsky, E. Kaiser, S. L. Brunton, and J. N. Kutz, “Principal
component trajectories for modeling spectrally-continuous dynamics as
forced linear systems,” Jan. 2022.

[28] K. Champion, S. L. Brunton, and J. N. Kutz, “Discovery of Nonlinear
Multiscale Systems: Sampling Strategies and Embeddings,” SIAM J.
Appl. Dyn. Syst., vol. 18, no. 1, pp. 312–333, Jan. 2019.

[29] A. G. Hoekstra, E. Lorenz, J.-L. Falcone, and B. Chopard, “Towards a
Complex Automata Framework for Multi-scale Modeling,” in Computa-
tional Science – ICCS 2007. Springer, 2007, vol. 4487, pp. 922–930.

[30] S. Wolfram, “Cellular automata as models of complexity,” Nature, vol.
311, no. 5985, pp. 419–424, Oct. 1984.

[31] N. Boccara, Modeling Complex Systems, ser. Graduate Texts in Physics.
New York, NY: Springer New York, 2010.

[32] A. Bretto, Hypergraph Theory: An Introduction, ser. Mathematical
Engineering. Heidelberg: Springer International Publishing, 2013.


	Introduction
	System Assumptions and Problem Statement
	Proposed Approach
	Time-Delay Embedding for Dynamics Reconstruction
	Proper Orthogonal Decomposition for State Abstraction
	Dynamic State Model Discovery via MSAF Design Pattern
	Knowledge Representation in Conceptual Spaces

	Experiments and Results
	Experimental Setup
	Results in the HCA Simulator

	Related Work
	Conclusions and Future Work
	References

